Math 115. Slides from the Lecture of November 26

(More) Infinite Simple Continued Fractions

Throughout today's class:

$$a_0, a_1, \dots \in \mathbb{Z}$$
 and $a_i > 0$ for all $i > 0$.

$$\begin{array}{ll} h_{-2}=0 \;, & h_{-1}=1 \;, & h_n=a_nh_{n-1}+h_{n-2} \quad \text{for all } n\geq 0 \\ k_{-2}=1 \;, & k_{-1}=0 \;, & k_n=a_nk_{n-1}+k_{n-2} \end{array}$$

$$r_n = \langle a_0, \dots, a_n \rangle = \frac{h_n}{k_n}$$
 for all $n \ge 0$.

[stuff on blackboard]

Lemma. Let $\theta = \langle a_0, a_1, \ldots \rangle$ and $\theta_1 = \langle a_1, a_2, \ldots \rangle$. Then:

- (a). $\theta > a_0$,
- (b). $\theta = a_0 + \frac{1}{\theta_1}$,
- (c). $\theta_1 > 1$, and
- (d). $a_0 = [\theta]$.

Proof. (a). $\theta > r_0 = \langle a_0 \rangle = a_0$.

(b). By continuity of $a_0 + 1/x$ on $(0, \infty)$, we have

$$\theta = \lim_{n \to \infty} \langle a_0, \dots, a_n \rangle = \lim_{n \to \infty} \left(a_0 + \frac{1}{\langle a_1, \dots, a_n \rangle} \right)$$
$$= a_0 + \frac{1}{\lim_{n \to \infty} \langle a_1, \dots, a_n \rangle} = a_0 + \frac{1}{\theta_1}.$$

(c). By (b) and the fact that $\langle a_2, a_3, \dots \rangle \geq a_2 > 0$,

$$\theta_1 = a_1 + \frac{1}{\langle a_2, a_3, \dots \rangle} > a_1 \ge 1$$
.

(d). By (a), (b), and (c) (respectively),

$$a_0 \le \theta = a_0 + \frac{1}{\theta_1} < a_0 + 1$$
.

Theorem (Uniqueness). Let $\langle a_0, a_1, \ldots \rangle$ and $\langle b_0, b_1, \ldots \rangle$ be infinite simple continued fractions. If $\langle a_0, a_1, \ldots \rangle = \langle b_0, b_1, \ldots \rangle$, then $a_i = b_i$ for all i.

Proof. Induction on i. Let $\theta = \langle a_0, a_1, \dots \rangle = \langle b_0, b_1, \dots \rangle$. Then $a_0 = [\theta] = b_0$; combining this with

$$a_0 + \frac{1}{\langle a_1, a_2, \dots \rangle} = \theta = b_0 + \frac{1}{\langle b_1, b_2, \dots \rangle}$$

gives $\langle a_1, a_2, \dots \rangle = \langle b_1, b_2, \dots \rangle$. Repeat to get $a_i = b_i$ for all i by induction.

This suggests that a procedure, similar to that for finding finite simple continued fractions, would be useful for finding infinite simple continued fractions (or at least initial finite sequences of their partial quotients a_i).

Summarizing (so far)

We defined a function

 $f\colon \{\text{infinite integer sequences}\ a_0,a_1,\dots\ \text{with}\ a_i>0\ \text{for all}\ i>0\,\}\longrightarrow \mathbb{R}\setminus \mathbb{Q}$ given by

$$(a_0, a_1, \dots) \mapsto \langle a_0, a_1, \dots \rangle$$
.

We showed that this function is *injective*.

Theorem (Existence). Let $\xi \in \mathbb{R}$ be an irrational number. Then:

(a). there exists an integer sequence a_0, a_1, \ldots with $a_i > 0$ for all i > 0, and irrational $\xi_0, \xi_1, \cdots \in \mathbb{R}$, such that: (i)

$$\langle a_0, \dots, a_{i-1}, \xi_i \rangle = \xi \tag{*}$$

for all $i \in \mathbb{N}$; and (ii) $\xi_i > 1$ for all i > 0.

(b). $\langle a_0, a_1, \dots \rangle = \xi$.

Proof. (a). By induction on $n \in \mathbb{N}$, we will construct a_0, \ldots, a_{n-1} and ξ_0, \ldots, ξ_n such that (*) holds for all $i \leq n$.

Base case: If n = 0, then no a_i need to be constructed, and we let $\xi_0 = \xi$. Then (*) with i = 0 is $\langle \xi_0 \rangle = \xi_0 = \xi$, so we're done.

Inductive step: Assume that n > 0, and that we have $a_0, \ldots, a_{n-2} \in \mathbb{Z}$ and irrational ξ_0, \ldots, ξ_{n-1} , such that $a_i > 0$ for all $0 < i \le n-2$ and (*) holds for all $0 \le i < n$.

Let $a_{n-1} = [\xi_{n-1}]$ and $\xi_n = \frac{1}{\xi_{n-1} - a_{n-1}}$. Note that:

- ξ_n is irrational because ξ_{n-1} is,
- $0 < \xi_{n-1} a_{n-1} < 1 \ (\xi_{n-1} \neq a_{n-1} \text{ because } \xi_{n-1} \text{ is irrational}),$
- \bullet $\xi_n > 1$.
- $\langle a_0, \dots, a_{n-1}, \xi_n \rangle = \langle a_0, \dots, a_{n-2}, a_{n-1} + 1/\xi_n \rangle = \langle a_0, \dots, a_{n-2}, \xi_{n-1} \rangle = \xi;$ and
- $a_{n-1} > 0$ if n > 1 (because $\xi_{n-1} > 1$ if n > 1).

This proves (a).

(b). Let $\theta = \lim_{n \to \infty} r_n = \langle a_0, a_1, \dots \rangle$. We need to show that $\theta = \xi$.

For all $n \geq 2$ let $f_n : \mathbb{R}_{>0} \to \mathbb{R}$ be the function

$$f_n(x) = \langle a_0, \dots, a_{n-1}, x \rangle = \frac{h_{n-1}x + h_{n-2}}{k_{n-1}x + k_{n-2}}$$
.

Then

$$f'_n(x) = \frac{d}{dx} \left(\frac{h_{n-1}x + h_{n-2}}{k_{n-1}x + k_{n-2}} \right)$$

$$= \frac{h_{n-1}(k_{n-1}x + k_{n-2}) - k_{n-1}(h_{n-1}x + h_{n-2})}{(k_{n-1}x + k_{n-2})^2}$$

$$= \frac{h_{n-1}k_{n-2} - k_{n-1}h_{n-2}}{(k_{n-1}x + k_{n-2})^2} = \frac{(-1)^n}{(k_{n-1}x + k_{n-2})^2}.$$

Since $n \geq 2$, $k_{n-1} > 0$ and $k_{n-2} > 0$, so $k_{n-1}x + k_{n-2} > 0$ for all x > 0; therefore f_n is differentiable on $(0, \infty)$. In fact, it is *monotone* there: increasing if n is even, or decreasing if n is odd. (This generalizes Exercise 7.1.5 if $n \geq 2$.)

Therefore $f_n(\xi_n) = \langle a_0, \dots, a_{n-1}, \xi_n \rangle = \xi$ is between

$$\lim_{x \to 0^+} f_n(x) = \frac{h_{n-2}}{k_{n-2}} = r_{n-2} \quad \text{and} \quad \lim_{x \to \infty} f_n(x) = \frac{h_{n-1}}{k_{n-1}} = r_{n-1}$$

(i.e., $r_{n-2} < \xi < r_{n-1}$ or $r_{n-1} < \xi < r_{n-2}$).

In particular, $|\xi - r_{n-1}| < |r_{n-1} - r_{n-2}|$. Since $|r_{n-1} - r_{n-2}| \to 0$ as $n \to \infty$, we have $\lim_{n\to\infty} |\xi - r_n| = 0$, so $\lim_{n\to\infty} r_n = \xi$; therefore $\xi = \theta$.

Corollary. ξ is in the image of the map f defined earlier, so f is surjective. Therefore f is bijective.

Summarizing, we have bijections:

$$\mathbb{Q} = \{ \text{rational numbers} \} \leftrightarrow \{ \text{finite simple continued fractions} \\ \langle a_0, \dots, a_n \rangle \text{ with } n = 0 \text{ or } a_n > 1 \} \\ \leftrightarrow \{ \text{finite simple continued fractions} \\ \langle a_0, \dots, a_n \rangle \text{ with } n > 0 \text{ and } a_n = 1 \}$$

and

$$\mathbb{R} \setminus \mathbb{Q} = \{ \text{irrational real numbers} \}$$

$$\leftrightarrow \{ \text{infinite simple continued fractions} \}.$$

Example Computations

(1) Let $\xi = \sqrt{10}$. Then

$$a_0 = \left[\sqrt{10}\right] = 3 \; ; \quad \xi_1 = \frac{1}{\sqrt{10} - 3} = \frac{\sqrt{10} + 3}{10 - 3^2} = \sqrt{10} + 3$$

$$a_1 = \left[\sqrt{10} + 3\right] = 6 \; ; \quad \xi_2 = \frac{1}{(\sqrt{10} + 3) - 6} = \frac{1}{\sqrt{10} - 3} = \sqrt{10} + 3 = \xi_1 \; ;$$

therefore $\sqrt{10} = \langle 3, 6, 6, \dots \rangle$.

(2) Let $\xi = \sqrt{6}$. Then

$$a_0 = \left[\sqrt{6}\right] = 2 \; ; \quad \xi_1 = \frac{1}{\sqrt{6} - 2} = \frac{\sqrt{6} + 2}{6 - 2^2} = \frac{\sqrt{6} + 2}{2}$$

$$a_1 = \left[\frac{\sqrt{6} + 2}{2}\right] = 2 \; ; \quad \xi_2 = \frac{1}{\frac{\sqrt{6} + 2}{2} - 2} = \frac{2}{\sqrt{6} + 2 - 4} = \frac{2}{\sqrt{6} - 2}$$

$$= \frac{2(\sqrt{6} + 2)}{6 - 4} = \sqrt{6} + 2$$

$$a_2 = \left[\sqrt{6} + 2\right] = 4 \; ; \quad \xi_3 = \frac{1}{\sqrt{6} + 2 - 4} = \frac{1}{\sqrt{6} - 2} = \xi_1 \; ;$$

therefore $\sqrt{6} = \langle 2, 2, 4, 2, 4, \dots \rangle$.

(3) In the opposite direction, what is $\langle 1, 2, 1, 3, 1, 3, \dots \rangle$? First find $\langle 1, 3, 1, 3, \dots \rangle$. Let $\theta = \langle 1, 3, 1, 3, \dots \rangle$. Then

$$\theta = 1 + \frac{1}{3 + \frac{1}{\theta}} = 1 + \frac{\theta}{3\theta + 1} = \frac{4\theta + 1}{3\theta + 1}$$
.

Therefore $\theta(3\theta + 1) - (4\theta + 1) = 0$; $3\theta^2 - 3\theta - 1 = 0$; so

$$\theta = \frac{3 \pm \sqrt{9 + 12}}{6} = \frac{3 \pm \sqrt{21}}{6} \ .$$

Since $\theta > 1$, it can't be $< \frac{1}{2}$, so it must be $\frac{3+\sqrt{21}}{6}$. Then

$$\langle 1,2,1,3,1,3,\dots \rangle = 1 + \frac{1}{2 + \frac{1}{3 \pm \sqrt{21}}} \ ,$$

whatever that is.

(4) Euler showed that

$$e = \langle 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, \ldots \rangle$$
.

Why Do We Study Continued Fractions?

Answer: Diophantine approximation.

A large **partial quotient** a_n indicates that (the rational number) $\langle a_0, \ldots, a_{n-1} \rangle$ is very close to the number $\langle a_0, a_1, \ldots \rangle$ or $\langle a_0, \ldots, a_k \rangle$ $(k \ge n)$.

Example.

$$\frac{4}{7} = \langle 0, 1, 1, 3 \rangle$$

$$\frac{4}{7} \approx 0.571 = \langle 0, 1, 1, 3, 47, 3 \rangle$$

$$\frac{4}{7} \approx 0.572 = \langle 0, 1, 1, 2, 1, 35 \rangle$$