Math 115. Slides from the Lecture of November 26
(More) Infinite Simple Continued Fractions
Throughout today’s class:

ap,a1, - €% and a; >0 forall ¢ >0 .

ho=0, h_1=1, h,=aphpn_1+hp_o foralln>0
ko=1, k1=0, kn=ankn1+kno2

h
rn:<ao,...,an>:k—n forall n >0 .

[stuff on blackboard]

Lemma. Let 0 = {(ag,a1,...) and 01 = {(a1,as9,...). Then:

(a). 0 > ag,
(b). 0 =ag+ Qi ,
1
(¢). 01 > 1, and
(d). aop =10
Proof. (a). 0 > 19 = (ap) = ao -

(b). By continuity of ag+ 1/z on (0,00), we have

1
0 = lim (ag,...,a,) = lim (ao—f—()

n—oo n— 00 Alyen.y CLn>

1

limy, o0 (ay, ..., an)

=ap + =ao+ —

0,
(c). By (b) and the fact that (as,as,...) >as >0,

1
91:a1+7>a121.
<a2,a3,...>

Theorem (Uniqueness). Let (ag,a1,...) and (bg,bi1,...) be infinite simple continued
fractions. If {(ag,a1,...) = (bo,b1,...), then a; =b; for all i.
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Proof. Induction on i. Let 6 = (ag,a1,...) = (bo,b1,...). Then ay = [0] = bo;
combining this with

+ 1 0 =by+ !

a _—_—mm = —_—

0 <a1,a2,...> 0 (bl,bg,...>

gives (ay,as,...) = (by,ba,...). Repeat to get a; = b; for all i by induction. O

This suggests that a procedure, similar to that for finding finite simple continued
fractions, would be useful for finding infinite simple continued fractions (or at least
initial finite sequences of their partial quotients a; ).

Summarizing (so far)

We defined a function
f: {infinite integer sequences ag,ai,... with a; >0 forall i >0} — R\ Q

given by
(ag,a1,...) > (ag,a1,...) .
We showed that this function is injective.

Theorem (Existence). Let £ € R be an irrational number. Then:

(a). there exists an integer sequence ag,ay,... with a; > 0 for all i > 0, and
irrational &y,&1,--- € R, such that: (i)
(ag,...,a;-1,&) =¢ )

for all i € N; and (ii) & > 1 for all i > 0.
(b). (ag,a1,...)=¢.

Proof. (a). By induction on n € N, we will construct ag,...,a,—1 and &,...,§, such
that (*) holds for all i <n.

Base case: If n =0, then no a; need to be constructed, and we let & = £. Then
(*) with ¢ =0 is (&) = & = £, so we're done.

Inductive step: Assume that n > 0, and that we have aq,...,a,_2 € Z and
irrational &,...,&,—1, such that a; > 0 for all 0 < i < n —2 and (*) holds for all
0<i<n. .

Let ap—1 = [£n-1] and §, = —— . Note that:
gnfl — Qp—1

e ¢, isirrational because &, 1 is,

o 0<&1—an1<1 (& -1+# an_1 because &,_1 is irrational),

o &> 1,

[ ] <G0, e ,an_1,€n> = <a0, ey p—2,Qp—1 + 1/§n> = <a0, ceey an_g,fn_1> = f,
and

e a, 1>0if n>1 (because &,_1>1if n>1).



This proves (a).
(b). Let 0 = lim,,_yo0 7o, = (a0, a1,...). We need to show that 6 =¢.
For all n > 2 let f,: R>o — R be the function

hn—lx + hn—2

fo(z) = (ag,...,apn—1,2) = [ .

Then

d hn,1$ + hn,Q
/ P — S
ful®) = 4 (knlx ¥ knz)

o hn—l(kn—lz + kn—Q) - kn—l(hn—lx + hn—2)
(kn—12 4 kp_2)?
_ hnflkan - knflhn72 (_1)71

(kn—lx + kn—2)2 B (kn—lx + kn—2>2 '

Since n > 2, k,_1 >0 and k,_o > 0, so k,_1x +k,_o > 0 for all z > 0;
therefore f, is differentiable on (0,00). In fact, it is monotone there: increasing if n
is even, or decreasing if n is odd. (This generalizes Exercise 7.1.5 if n > 2.)

Therefore f,,(&,) = (ag,...,an—1,&n) = £ is between

S )= i ) = =

(i€, Thoo <E<Tp_1 OF Ty_1 <E<Tp_2).
In particular, [ —7,_1] < |rn_1 —7rn_2|. Since |r,_1 —rp_2| = 0 as n — co, we
have lim,, o0 [ — 75| =0, so lim, o0 1, = &; therefore &€ = 6. O

Corollary. ¢ isin the image of the map f defined earlier, so f is surjective. Therefore
f is bijective.

Summarizing, we have bijections:
Q = {rational numbers} <> {finite simple continued fractions
(ag,...,an) withn =0 or a, > 1}

<> {finite simple continued fractions

(ag,...,an) withn >0 and a, = 1}

and

R\ Q = {irrational real numbers}

< {infinite simple continued fractions} .



Example Computations

(1) Let ¢ =+/10. Then

1 V10 +3
aoz[\EO]:?); él:\/ﬁ_?,: 10_ 32 =10+ 3
1

1
(VI0+3)—6 10— 3

:\/E+3:£1;

alz[m+3]:6; 52:

therefore /10 = (3,6,6,...).
(2) Let € = /6. Then

1L V6+2 V62

GOZ[\/é]ZQ; 51:\/6—2_6—22_ 5
a[ﬁ+2]2_£ 122
Lz T Y e s Ver2-4 VB2

_2(V6+2)
= =1 =V6+2
1 1
az = [V6+2] =4; 53:\/6—1—2—4:\/6—2:51;

therefore v6 = (2,2,4,2,4,...).

(3) In the opposite direction, what is (1,2,1,3,1,3,...)7
First find (1,3,1,3,...). Let 6 =(1,3,1,3,...). Then

1 4 1
L, 0 a0y

0=1+_-—7 = :
+3+g 30+1 30+1

Therefore (30 +1) — (40 +1) =0; 36> =30 —1=0; so

_3+£V0+12  3+4V21

b 6 6

Since 6 > 1, it can’t be < % , so it must be 3+%/ﬁ.
Then

(1,2,1,3,1,3,.. V=14 ———

whatever that is.



(4) Euler showed that

e=(2,1,2,1,1,4,1,1,6,1,1,...) .

Why Do We Study Continued Fractions?

Answer: Diophantine approzimation.

A large partial quotient a,, indicates that (the rational number) (ag,...,a,_1) is
very close to the number (ag,as,...) or (ag,...,ar) (k>n).
Example.
4
Z—10,1,1,3
S = 0.113)

0.571 = (0,1,1,3,47,3)

Q

~0.572 = (0,1,1,2,1, 35)
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