Math 115. Slides from the Lecture of November 19

This handout contains the slides from the lecture of November 19.

Arithmetic Functions

Definition.

- (a). An arithmetic function is a function from $\mathbb{Z}_{>0}$ to \mathbb{C} .
- (b). A multiplicative function is an arithmetic function f which is not the zero function, and which satisfies f(mn) = f(m)f(n) for all relatively prime $m, n \in \mathbb{Z}_{>0}$.
- (c). A totally multiplicative function is an arithmetic function f which is not the zero function, and which satisfies f(mn) = f(m)f(n) for all $m, n \in \mathbb{Z}_{>0}$.

Examples.

- The constant function 1 is totally multiplicative, and multiplicative
- So is $f(n) = n^r$, for any $r \in \mathbb{R}$
- If f is totally multiplicative, then it is multiplicative
- The Euler φ -function is multiplicative, but not totally multiplicative

Examples.

- The function f(m) equal to the number of quadratic residues modulo m is multiplicative but not totally multiplicative
- The function f(m) equal to the number of primitive roots modulo m is not multiplicative (why?)

Notation: When writing $\sum_{d|n}$ or $\prod_{d|n}$, we're tacitly requiring d > 0.

Definition. For $n \in \mathbb{Z}_{>0}$, define:

- d(n) = the number of positive divisors of $n: \sum_{d|n} 1$
- $\sigma(n) =$ the sum of the positive divisors of $n: \sum_{d|n}^{\cdot} d$
- $\sigma_k(n) = \sum_{d|n} d^k \ (\sigma_0(n) = d(n), \ \sigma_1(n) = \sigma(n))$
- $\omega(n) =$ the number of primes dividing n
- $\Omega(n) =$ the number of primes dividing n, with multiplicity Note that

$$\Omega\left(\prod p^{\alpha(p)}\right) = \sum \alpha(p)$$

Also $d(\prod p^{\alpha(p)}) = \prod (\alpha(p) + 1)$. This is multiplicative.

And, $e^{\omega(n)}$ and $e^{\Omega(n)}$ are multiplicative and strongly multiplicative, respectively.

A multiplicative function is uniquely determined by its values on prime powers (as for $\phi(m)$).

A totally multiplicative function is uniquely determined by its values on prime numbers.