
Math 115. Slides from the Lecture of November 5

This handout contains the slides from the lecture of November 5.

Equivalent Forms have the Same Discriminant

Theorem. If f and g are equivalent forms, then they have the same discriminant.

Proof. Write f(x, y) = ax2+bxy+cy2 , and let d = b2−4ac . Also let F =

[
a b/2
b/2 c

]
;

then

[x y ]F

[
x
y

]
= [x y ]

[
a b/2
b/2 c

] [
x
y

]
= [x y ]

[
ax+ by/2
bx/2 + cy

]
= x(ax+ by/2) + y(bx/2 + cy) = ax2 + bxy + cy2

= f(x, y) ,

and

detF = ac− b2/4 = −d/4 .

Also let g(x, y) = a′x2+b′xy+c′y2 , let d′ = b′2−4a′c′ , and let G =

[
a′ b′/2
b′/2 c′

]
.

Let M ∈ Γ be a matrix that takes f to g , so that g = f ◦ TM . Then

g(x, y) = f(TM (x, y)) =

(
M

[
x
y

])t

F

(
M

[
x
y

])
=

[
x
y

]t
M tFM

[
x
y

]
= [x y ]

(
M tFM

) [x
y

]
,

Recalling that g(x, y) = [x y ]G

[
x
y

]
, we then have

G = MTFM .

However, this takes a proof.
First, we note (from the identity (AB)t = BtAt ) that

(M tFM)t = M tF t(M t)t = M tFM ,

and therefore M tFM is a symmetric matrix.
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Write M tFM =

[
α β/2
β/2 γ

]
. Then

a′x2 + b′xy + c′y2 = g(x, y) = [x y ]

[
α β/2
β/2 γ

] [
x
y

]
= αx2 + βxy + γy2

for all x, y ∈ Z .
This implies a′ = α , b′ = β , and c′ = γ . Thus

M tFM = G .

Taking determinants of both sides of M tFM = G then gives

−d
′

4
= detG = det

(
M tFM

)
=

(
det

(
M t

))(
detF

)(
detM

)
= 1 · detF · 1

= detF = −d
4
,

and therefore d′ = d . �

Our Next Goal

Our next goal will be to show that, for each integer d , there are only finitely many
equivalence classes of forms of discriminant d .

Definition. Let f(x, y) = ax2 +bxy+cy2 be a form whose discriminant is not a perfect
square. Then f is reduced if:

−|a| < b ≤ |a| < |c| , or

0 ≤ b ≤ |a| = |c| .

Theorem. Let d be an integer, not a perfect square. Then every form of discriminant
d is equivalent to a reduced form.

[Watch for: Where in the proof is the fact that d is not a perfect square used?]

Proof. Let f(x, y) = ax2 +bxy+cy2 be a form of discriminant d (with d not a perfect
square). We want to show that it’s equivalent to a reduced form. Note that a 6= 0 and
c 6= 0 . [Why?]
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We carry out the following procedure:

Step 1. If |c| < |a| , then

[
0 1
−1 0

]
∈ Γ takes f to f(y,−x) = cx2 − bxy + ay2 .

So, after doing this if necessary, we may assume that |a| ≤ |c| .

Step 2. Notice that, for any m ∈ Z , the matrix M =

[
1 m
0 1

]
∈ Γ takes f(x, y)

to f(x + my, y) = ax2 + (2am + b)xy + (am2 + bm + c)y2 . Choose m such that
−|a| < 2am+ b ≤ |a| .

Step 3. If |c| < |a| , go back to Step 1 (otherwise continue).
Step 4.

• If |c| > |a| , congratulations! You have a reduced form.
• If |c| = |a| and b ≥ 0 , congratulations! You have a reduced form.

• If |c| = |a| and b < 0 , then use

[
0 1
−1 0

]
again. Your form is now reduced,

because 0 < b < |a| = |c| .
Can this procedure go on forever?
Only if you do Step 1 infinitely many times.
However, Step 1 strictly decreases |a| , and all other steps leave |a| unchanged. So

the procedure must eventually stop. �

Where did we use the assumption that d is not a perfect square?
In Step 2, we needed |a| 6= 0 .

An Example

Reduce
f(x, y) = 17x2 − 26xy + 10y2 .

Step 1: |c| < |a| , so apply

[
0 1
−1 0

]
to get f ∼ 10x2 + 26xy + 17y2 .

Step 2: b > |a| , so choose m such that −|a| < 2am+ b ≤ |a| ;
−10 < 20m+ 26 ≤ 10 ; m = −1 .

So apply

[
1 −1
0 1

]
to get f ∼ 10x2 + 6xy + y2 .

Step 3: |c| < |a| , so go back to Step 1.

Step 1: |c| < |a| , so apply

[
0 1
−1 0

]
to get f ∼ x2 − 6xy + 10y2 .

Step 2: b ≤ −|a| , so choose m such that −|a| < 2am+b ≤ |a| ; −1 < 2m−6 ≤ 1 ;

m = 3 . Apply

[
1 3
0 1

]
to get f ∼ x2 + 0xy + y2 .

Step 3: |c| ≥ |a| , so don’t go back.
Step 4: Congratulations! ( |c| = |a| and b ≥ 0 ). This is reduced.

Note: x2 + y2 has discriminant −4 , and so does f , because

262 − 4 · 17 · 10 = 676− 680 = −4 .


