Math 115. Equivalence of Three Types of Induction

This handout discusses three types of induction, given below, and shows that they are equivalent. These types are:

Principle of Induction. Let $P(n)$ be a statement (proposition) depending on a number $n \in \mathbb{N}$. Assume that

(i). (basis statement) $P(0)$ is true, and

(ii). (inductive step) for all $n \in \mathbb{N}$, if $P(n)$ is true, then $P(n + 1)$ is also true.

Then $P(n)$ is true for all $n \in \mathbb{N}$.

Principle of Strong Induction. Let $P(n)$ be a statement (proposition) depending on a number $n \in \mathbb{N}$. Assume that

(i). (basis statement) $P(0)$ is true, and

(ii$'$). (inductive step) for all $n \in \mathbb{N}$, if $P(k)$ is true for all $k = 0, 1, \ldots, n$, then $P(n + 1)$ is also true.

Then $P(n)$ is true for all $n \in \mathbb{N}$.

Well-Ordering of \mathbb{N}. Every nonempty subset of \mathbb{N} has a smallest element.

A. Strong Induction implies Induction

Since $n \geq 0$, we have

$$P(k) \text{ is true for all } k = 0, 1, \ldots, n \quad \text{ implies } \quad P(n) \text{ is true}.$$

Therefore condition (ii) implies condition (ii$'$). This is because if (ii) is true and if $P(k)$ is true for all $k = 0, 1, \ldots, n$, then $P(n)$ is true, and therefore by (ii) $P(n + 1)$ is true. This verifies (ii$'$).

By a similar argument, the Principal of Strong Induction implies the Principle of Induction, because hypothesis (ii$'$) is weaker.

B. Induction implies Strong Induction

Let $Q(n)$ be the statement “$P(k)$ is true for all $k = 0, 1, \ldots, n$.” Then condition (i) for P implies condition (i) for Q. Also, assume that condition (ii$'$) holds for P. Then condition (ii) holds for $Q(n)$, because the truth of $Q(n)$ implies that $P(n + 1)$ is true (by (ii$'$)), and then $Q(n + 1)$ is true because both $Q(n)$ and $P(n + 1)$ are true.

By induction, it then follows that $Q(n)$ is true for all n, so $P(n)$ is also true for all n.

C. Well-Ordering of \mathbb{N} implies Induction

We will prove this by contradiction. (This is called the “method of the minimal counterexample.”)
Let P be a proposition as in the statement of the Principle of Induction. Let S be the set of all $n \in \mathbb{N}$ such that $P(n)$ is false, and assume by way of contradiction that S is nonempty.

Then S has a smallest element by the well ordering property; call it m. We know by assumption (i) that $m \neq 0$. Then $m - 1 \in \mathbb{N}$, and since m is the smallest element of S, we have $m - 1 \notin S$. Therefore $P(m - 1)$ is true; therefore $P(m)$ is also true by assumption (ii). This implies that $m \notin S$, which gives a contradiction.

Thus, if $P(n)$ is a proposition depending on $n \in \mathbb{N}$, and if P satisfies assumptions (i) and (ii) of the Principle of Induction, then $P(n)$ is true for all $n \in \mathbb{N}$.

D. Strong Induction implies Well-Ordering of \mathbb{N}

Suppose that the Principle of Strong Induction is true.

In order to prove that \mathbb{N} is well ordered, we prove the following statement $P(n)$ by strong induction on n: If S is a subset of \mathbb{N} and $n \in S$, then S has a smallest element.

The basis step is true, because if $0 \in S$ then 0 is the smallest element of S, because there are no smaller elements of \mathbb{N}.

For the inductive step, suppose that $P(k)$ is true for all $k = 0, 1, \ldots, n$. To show that $P(n + 1)$ is true, let S be a subset of \mathbb{N} that contains $n + 1$. If $n + 1$ is the smallest element of S, then we’re done. Otherwise, S has a smaller element k, and $P(k)$ is true by the inductive assumption, so again S has a smallest element.

Therefore, by strong induction, $P(n)$ is true for all $n \in \mathbb{N}$. This implies the well-ordering of \mathbb{N}, because if S is a nonempty subset of \mathbb{N}, then pick $n \in S$. Since $n \in \mathbb{N}$, $P(n)$ is true, and therefore S has a smallest element.

Comments

1. Parts C and D make part A redundant.

2. Part D is not really relevant, since well-ordering of \mathbb{N} is an axiom, but induction is a theorem. However, it may be useful if one has an axiom system in which induction is an axiom instead of well-ordering on \mathbb{N}. It is also useful for understanding why induction may or may not be valid for sets other than \mathbb{N}.

3. We also have principles of induction with \mathbb{N} replaced by $\mathbb{Z}_{>0}$. Moreover, for any $n_0 \in \mathbb{Z}$, we can do induction on the set of all integers $n \geq n_0$, merely by letting $P(k)$ be the proposition that whatever is true for $k + n_0$.

4. In the statement of Strong Induction, (i) and (ii”) can be combined into the following statement:

(ii”). (inductive step) for all $n \in \mathbb{N}$, if $P(k)$ is true for all $k \in \mathbb{N}$ with $k < n$, then $P(n)$ is also true.

Indeed, when $n = 0$ the hypothesis is vacuously true, which gives (i), and when $n > 1$ the condition is equivalent to (ii”) for $n - 1$.