Wednesday, November 28

Vector Space

Def. Let F be a field. A vector space over F is:

- an abelian group V, written additively, together with
- a function $F \times V \to V$, written $(a, \alpha) \mapsto a\alpha \ (a \in F, \alpha \in V)$

that satisfies:

$V_1: \alpha \in V \quad$ (redundant)

$V_2: a(b\alpha) = (ab)\alpha \quad \forall a, b \in F$

$V_3: (a+b)\alpha = a\alpha + b\alpha \quad \forall \alpha \in V$

$V_4: a(a+b) = a\alpha + a\beta \quad \forall \alpha, \beta \in V$

$V_5: 1\alpha = \alpha$

(Why is V_5 needed?) Otherwise we could have $a\alpha = 0 \quad \forall \alpha, a$.

Here: **Vectors** are the elements of V.

Scalars are the elements of F.

and $F \times V \to V$ is scalar multiplication.

Examples:*

1. $F = \mathbb{R}$, $V = \mathbb{R}^n$
2. F is any field, $V = F^n$
3. F is any field, $V = F[x]$
4. $F = \mathbb{R}$, $V = \{\text{continuous functions} \mid \mathbb{R} \to \mathbb{R}\}$
5. $F = \mathbb{R}$, $V = \{\text{C}^\infty \text{ functions} \mid \mathbb{R} \to \mathbb{R}\}$

Important for us -> $0\alpha = 0, \quad 0\alpha = 0$, and $(-a)\alpha = a(-\alpha) = -a\alpha \quad \forall a \in F, \alpha \in V$

These could be V_6, V_7, and V_8, except that they can be proved from $V_5 + V_5$ (Thm. 30.5).

Def: Linear combination $a_1\alpha_1 + a_2\alpha_2 + \ldots + a_n\alpha_n$ of $\alpha_1, \ldots, \alpha_n \in V$

(with weights $a_1, \ldots, a_n \in \mathbb{R}$)

- Span (of a subset of V),
- Linear dependence/independence
- Basis

are all as in Math 54.
Also: Gaussian elimination works.

Def. $\dim V$ is as in Math 54:

1. Any two finite bases of a vector space have the same number of elements.
2. If one basis of a given vector space V is finite, then all bases of V are finite.
3. Every vector space has a basis.

Def. A vector space V is **finite dimensional** if

- it can be spanned by a finite set, or
- $\dim V < \infty$ (Math 54)

These conditions are equivalent.

Note (not in book): A **linear transformation** $T: V \rightarrow W$ of vector spaces over F is a function $T: V \rightarrow W$ such that:

1. $T(\alpha + \beta) = T(\alpha) + T(\beta)$ \hspace{1cm} $\forall \alpha, \beta \in V$ and \hspace{1cm} homomorphism of abelian groups.
2. $T(a\alpha) = aT(\alpha)$ \hspace{1cm} $\forall a \in F$, $\alpha \in V$

This plays the role of homomorphism of vector spaces over F:

- it "plays nice" with the algebraic structures of V and W.
- An **isomorphism** of F-vector spaces is a bijective linear transformation.

Last time: Let E/F be a field extension and let $\alpha \in E$.

Assume that α is algebraic over F. Let $f = \text{irr}(\alpha, F) \in F[x]$ and let $n = \deg(\alpha, F) = \deg f$.

We showed that every element $\beta \in F(\alpha)$ can be written uniquely in the form

$$\beta = a_n \alpha^n + a_{n-1} \alpha^{n-1} + \cdots + a_1 \alpha + a_0$$

with $a_0, \ldots, a_{n-1} \in F$.

Recall that E is a vector space over F.

Then $F(\alpha)$ is a linear subspace of E, and
\[\{1, x, x^2, \ldots, x^{n-1}\} \text{ spans } F(x) \] (by existence of \(a_0, \ldots, a_n\))

and also \(\{1, x, \ldots, x^{n-1}\}\) is linearly independent \(\text{(over } F)\)

(by uniqueness of \(a_0, \ldots, a_n\), specifically for \(\beta = 0\))

\(\{1, x, \ldots, x^{n-1}\}\) is a basis for \(F(x)\).

We've proved:

Thm: Let \(E/F\) be a field extension, and let \(x \in E\).

Assume that \(x\) is algebraic over \(F\), and let \(n = \deg(x, F)\).

Then \(F(x)\) is a vector space over \(F\), and \(\{1, x, \ldots, x^{n-1}\}\) is a basis for it.

Examples:

- \(\mathbb{Q}(\sqrt{1 + \sqrt{3}})\) \quad \text{irr}(\sqrt{1 + \sqrt{3}}, \mathbb{Q}) = 2

- \(\mathbb{Q}(\sqrt{3})\) \quad \text{irr}(\sqrt{3}, \mathbb{Q}) = x^2 - 3 \quad \text{(because } x^2 - 3 \text{ is irreducible)}

Also \(\mathbb{Q}(\sqrt{1 + \sqrt{3}}) \supseteq \mathbb{Q}(\sqrt{3})\) because \(\mathbb{Q}(\sqrt{1 + \sqrt{3}}) \supseteq \mathbb{Q}(\sqrt{3})\) and \(\sqrt{1 + \sqrt{3}}\)

and \(\mathbb{Q}(\sqrt{3})(\sqrt{1 + \sqrt{3}}) = \mathbb{Q}(\sqrt{1 + \sqrt{3}}, \sqrt{3}) \quad \text{(true)}.

and \(\deg(\sqrt{1 + \sqrt{3}}, \mathbb{Q}(\sqrt{3})) = 2 \quad \text{because } \sqrt{1 + \sqrt{3}} \in \mathbb{Q}(\sqrt{3})\).

Also \(\deg(\sqrt{1 + \sqrt{3}}, \mathbb{Q}(\sqrt{3})) = 2 \quad \text{because } \sqrt{1 + \sqrt{3}} \in \mathbb{Q}(\sqrt{3})\).

\(\text{def:}\) Let \(E/F\) be a field extension.

Then the degree \((d)\) is finite dimensional \((\text{as a vector space over } F)\) \(\text{degree of } E \text{ over } F \text{ is } d\).

\(\deg(\sqrt{1 + \sqrt{3}}, \mathbb{Q}(\sqrt{3})) = 2 \quad \text{because } \sqrt{1 + \sqrt{3}} \in \mathbb{Q}(\sqrt{3})\).

\(\deg(\sqrt{1 + \sqrt{3}}, \mathbb{Q}(\sqrt{3})) = 2 \quad \text{by definition of degree.}\)
Example: \[[F(x):F] = n \quad \text{if } \deg x \text{ is algebraic over } F \] and \(\deg (\alpha_1 F) = n \).

\[[C:R] = 2 \quad C = R(i), \]
\[[R:Q] = \infty \quad (I \text{ won't prove}) \]

Notes: \([E:F] = 1 \quad \Rightarrow \quad E = F \quad (E/F \text{ is a field extension}). \)

\(\leq \quad \Rightarrow \quad \{i\} \text{ is a basis.} \)

\(\Rightarrow \quad \{i\} \text{ is linearly independent, } \Rightarrow \text{so it's a basis,} \)

Previous examples:

\[\mathbb{Q}(j) \]
\[\mathbb{Q}((-\sqrt{3}) \]
\[\mathbb{Q}(\sqrt{3}) \]
\[\mathbb{Q}(\sqrt{5}) \]

Definition: A field extension \(E/F \) is:

- algebraic if all \(\alpha \in E \) are algebraic over \(F \), and
- finite if \([E:F] < \infty \).

Theorem: If \(E/F \) is algebraic, then it's finite. (as a v.s.)

Proof: Assume \(E/F \) is finite. Let \(n = [E:F] = \dim_E \) over \(F \)

Let \(\alpha \in E \). Then \(1, \alpha, \alpha^2, \ldots, \alpha^n \) are \(n+1 \) elements of \(E \), so they must be linearly dependent:

\[a_n \alpha^n + a_{n-1} \alpha^{n-1} + \ldots + a_0 = 0 \]

with \(a_i \in F \forall i \), not all \(a_i = 0 \).

Then \(a_n \alpha^n + a_{n-1} \alpha^{n-1} + \ldots + a_0 \in F[x] \) is a nonzero polynomial that vanishes at \(\alpha = \alpha \). So \(\alpha \) is algebraic over \(F \).

(This also shows: \(\deg (\alpha_1 F) \leq n \))

(We know this, because \(\deg (\alpha F) = \dim F(\alpha) \leq \dim E = n \))

\(F(\alpha) \text{ is a subspace of } E \).
Theorem. Let $K/E/F$ be a tower of field extensions. Then

$$[K:F] = [K:E][E:F]$$

(in the sense that if the RHS is finite, then so is the LHS, and conversely).

Proof. Assume that the RHS is finite. Let $\alpha_1, \ldots, \alpha_n$ be a basis for E over F and β_1, \ldots, β_m a basis for K over E. Let $S = \{\alpha_i \beta_j : i=1, \ldots, n; j=1, \ldots, m\}$, note $|S| = mn < \infty$.

Claim: S spans K (as a v.s. over F).