Wednesday, Nov. 14

Last time... We proved:
- If F is a field then every ideal in $F[x]$ is principal,
 and
- Such an ideal $<p(x)>$ is maximal $\iff p$ is irreducible.

Thm (loose end from Mon., Nov. 5): Let F be a field and let $p, r, s \in F[x]$. If p is irreducible and $p | rs$, then $p | r$ or $p | s$.

Proof: $p | rs \iff rs \in <p> \Rightarrow r \in <p>$ or $s \in <p> \iff p | r$ or $p | s$.

Next: Study Fields.

Our first basic goal: Show that every nonconstant polynomial in $F[x]$ (where F is a field) has a zero...

... Somewhere... in some larger field (containing F as a subfield).

Def: If E and F are fields, and $F \subseteq E$, then we say that E is an extension field of F. We also write "E/F is a field extension", or write E/F in diagrams.

Example:

\[
\begin{align*}
\{a+bi : a, b \in \mathbb{Q}\} & \quad \text{C} \\
\{a+bi : a, b \in \mathbb{R}\} & \quad \mathbb{R} \\
\{a+bi : a, b \in \mathbb{Q}\} & \quad \mathbb{Q}
\end{align*}
\]

\[
\begin{align*}
\{a+bi : a, b \in \mathbb{Q}\} & \quad \text{C} \\
\{a+bi : a, b \in \mathbb{R}\} & \quad \mathbb{R} \\
\{a+bi : a, b \in \mathbb{Q}\} & \quad \mathbb{Q}
\end{align*}
\]
Kronecker's Theorem ("Basic goal"): Let F be a field and let $f(x) \in F[x]$ be a nonconstant polynomial. Then there exists an extension field E/F and an element $\alpha \in E$ such that $f(\alpha) = 0$.

Proof: Let $p(x)$ be an irreducible factor of $f(x)$. It will be enough to find E that contains a root of p.

Let $E = F[x]/<p>$. Since p is irreducible, $<p>$ is maximal, therefore $E = F[x]/<p>$ is a field.

Define $\psi : F \to E$ by $F \to F[x] \xrightarrow{\text{canonical map}} F[x]/<p> = E$

Note that $\psi(c) \not\equiv 0$ because $1 + <p> \not\equiv 0$ ($1 \not\equiv <p>$).

Let $\ker \psi = <0>$ (we just showed $\ker \psi \neq F$, i.e., $\ker \psi = <0>$ because $\ker \psi$ is an ideal and there are the only ideals in F).

So we can regard E as an extension field of F.

Now let $\alpha = x + <p> \in E$. Write $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \in F$.

Then $p(\alpha) = (a_n + <p>)(x + <p>)^n + (a_{n-1} + <p>)(x + <p>)^{n-1} + \ldots + (a_0 + <p>)$

$= (a_n + <p>) + (a_{n-1} + <p>)(x + <p>)^{n-1} + \ldots + (a_0 + <p>)$

$= (a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0) + <p>$

$= p(x) + <p>$

$= 0 + <p>$. So α is a root of $p(x)$.

\square
Examples

\[F = \mathbb{Q}, \quad f(x) = x^2 - 2. \]

This is irreducible, so let \(\rho = \mathbb{F} \).

Then \(\mathbb{E} = F[x]/\langle x^2 - 2 \rangle \), and \(\alpha = x + \langle x^2 - 2 \rangle \).

Since \(\mathbb{Q}[x] \to \mathbb{E} \) is onto, every element \(\beta \in \mathbb{E} \) can be written as \(g(x) + \langle p \rangle \) for some \(g \in \mathbb{Q}[x] \).

For example, \(\beta = x^4 + x^3 + 3x + 7 + \langle p \rangle \)

\[= \alpha^4 + \alpha^3 + 3\alpha + 7 \]

\[= 2^2 + 2\alpha + 3\alpha + 7 = 5\alpha + 11. \quad \text{(since } \alpha^2 = 2). \]

Or, we could've used the division algorithm

\[x^4 + x^3 + 3x + 7 = (x^2 + x + 2)(x^2 - 2) + (3x^2 + 11) \]

\[\text{mod } \langle \alpha^2 - 2 \rangle \quad \alpha \in \mathbb{E} \]

By the uniqueness part of the division algorithm (for polynomials): for any \(\beta \in \mathbb{E} \) there is exactly one \(r(x) \in \mathbb{Q}[x] \) of degree \(< \deg \rho \) such that \(\beta = r(x) \).

In our example, if \(c, c', d, d' \in \mathbb{Q} \) and \(\alpha x + d = c\alpha + d' \), then

\((c - c') \alpha = d' - d \), so we must have \(c = c' \), otherwise we'd have \(\alpha = \frac{d' - d}{c - c'} \in \mathbb{Q} \), which isn't true.

Also, there always exist such an \(r(x) \).

So \(\mathbb{E} = \{ a\alpha + b : a, b \in \mathbb{Q} \} \supseteq \{ a\alpha^2 + b : a, b \in \mathbb{Q} \} \)

(As in the earlier homework problems).

More generally, we can do this for any irreducible polynomial \(\rho(x) \); for example, if \(\rho \in \mathbb{Q}[x] = x^2 - 2x^2 + 4x - 2 \in \mathbb{Q}[x] \)

(irreducible since it's Eisenstein for the prime \(2 \)).

Then for this \(\rho \), \(\mathbb{E} = \mathbb{Q}[x]/\langle \rho \rangle = \{ a\alpha^2 + b\alpha + c : a, b, c \in \mathbb{Q} \} \mathbb{C} \mathbb{R} \)

when \(\alpha \) is a real root of \(\rho \).

Def: Let \(\mathbb{E}/\mathbb{F} \) be a field extension. Then an element \(\alpha \in \mathbb{E} \) is algebraic over \(\mathbb{F} \) if there is a nonzero polynomial \(f(x) \in \mathbb{F}[x] \) such that \(f(\alpha) = 0 \). Otherwise, it is said to be transcendental over \(\mathbb{F} \).

Elements of \(\mathbb{C} \) are said to be algebraic numbers if they are algebraic over \(\mathbb{Q} \), and transcendental numbers otherwise.
Example: \(\sqrt{2}, \sqrt[3]{18}, \sin 1^\circ \) are algebraic numbers.
\(e \) is transcendental (can't prove in this class).

Theorem: Let \(E/F \) be a field extension. Then an element \(x \in E \) is transcendental over \(F \) if and only if the evaluation homomorphism \(\Phi_x : F[x] \rightarrow E \) is one-to-one.

Proof: \(x \) is algebraic over \(F \) \(\iff \ker(\Phi_x) = \{0\} \) \(\iff \Phi_x \) is not one-to-one. \(\Box \)

Interlude on rings and polynomials.

Proposition: Let \(R \) be a commutative ring with unity 1. Let \(x, y \in R \), not zero divisors and not zero. Then \(\langle x \rangle = \langle y \rangle \) if and only if \(x = uy \) for some unit \(u \in R \).

Proof: "\(\Rightarrow \): If \(x = uy \) then \(x \in \langle y \rangle \), so \(\langle x \rangle \subseteq \langle y \rangle \).

"\(\Leftarrow \): \(\langle x \rangle = \langle y \rangle \Rightarrow x \in \langle y \rangle \), so \(x = ay \) for some \(a \in R \). Also \(\langle x \rangle = \langle y \rangle \Rightarrow y \in \langle x \rangle \), so \(y = bx \) for some \(b \in R \).

\(x = ay = a(bx) \), so \(1x = (ab)x \). Cancellation \(x \) since \(x \) is not a zero divisor and not 0) gives \(ab = 1 \).
\(a \) is a unit, and \(x = ay \). \(\Box \)

Corollary: Let \(F \) be a field and \(p, q \in F[x] \), both \(\neq 0 \). Then the proposition applies, and \(\langle p \rangle = \langle q \rangle \Rightarrow p = uq \) for some unit \(u \in F[x] \). But units in \(F[x] \) are exactly nonzero elements of \(F \) (or a hoot problem), so \(p \) is a constant multiple of \(q \) (and vice versa). \(\Box \)

Then \(\langle p \rangle = \langle q \rangle \iff \) they are constant multiples of each other.