Last time: In a commutative ring \(R \) with 1, an ideal \(M \) is maximal \(\iff \) \(R/M \) is a field.

Example: An ideal \(n\mathbb{Z} \) in \(\mathbb{Z} \) is maximal \(\iff \) \(n \) is prime

\(\mathbb{Z}/n\mathbb{Z} \) is a field \(\iff n \) is prime (\(\Rightarrow \))

\(\mathbb{Z}/0\mathbb{Z} \) is not a field, and 0 is not prime

Def: Let \(R \) be a commutative ring. An ideal \(N \) in \(R \) is prime if:

1. \(N \neq R \) and
2. \(ab \in N \) implies \(a \in N \) or \(b \in N \), for \(a, b \in R \).

Thm: In a commutative ring \(R \) with 1, an ideal \(N \) is prime \(\iff \) \(R/N \) is an integral domain.

Proof: First, \(R/N \) is always commutative and always has 1.

1. \(N \neq R \iff R/N \neq \{0\} \iff R/N \) has 1\(\neq 0 \).
2. \(ab \in N \) implies \(a \in N \) or \(b \in N \), for \(a, b \in R \) \(\iff \) \(R/N \) has no zero divisors.

"\(\iff \)": If \(R/N \) has no zero divisors, then

\[
(a+N)(b+N) = 0 \implies a+N = 0 \text{ or } b+N = 0 \text{ in } R/N
\]

\[
\iff \quad (a+N)(b+N) = ab+N
\]

\(\iff \) (2): \(ab \in N \)

\(\iff \) \(N \) is prime \(\iff \) (1) and (2) are true \(\iff \) there are no other cases in \(R/N \) is an integral domain.

Cor: In a commutative ring with 1, every maximal ideal is prime.

Proof: Let \(R \) be such a ring, and let \(M \) be an ideal in \(R \).

Then \(M \) is maximal \(\iff \) \(R/M \) is a field \(\Rightarrow \) \(R/M \) is an integral domain \(\iff M \) is prime.
Examples: In \(\mathbb{Z} \), an ideal \(n\mathbb{Z} \) prime \(\iff \) \(n \) is prime or \(n = 0 \).

And, \(\mathbb{Z}/n\mathbb{Z} \cong \begin{cases} \mathbb{Z} & \text{if } n \neq 0 \\ \mathbb{Z}/n & \text{if } n = 0 \end{cases} \) \(\iff \) \(n \) is prime or \(n = 0 \).

Recalls \[\text{Prime subfield of a field} \]

Recalls: Let \(R \) be a ring with 1. Then there’s a group homomorphism \(\varphi: \mathbb{Z} \to R \) such that \(\varphi(1) = 1 \). This is a group homomorphism from \(\langle \mathbb{Z}, + \rangle \) to \(\langle R, + \rangle \). It is also a ring homomorphism by the distributive laws.

Its kernel is \(n\mathbb{Z} \), where \(n = \text{char } R \).

Cor: \(R \) contains a subring isomorphic to \(\mathbb{Z} \) if \(\text{char } R = 0 \), or isomorphic to \(\mathbb{Z}/n\mathbb{Z} \) if \(\text{char } R = n \neq 0 \).

Proof: The subring is \(\varphi[\mathbb{Z}] \), which is isomorphic to \(\mathbb{Z}/\ker \varphi \) \(\cong \mathbb{Z}/n\mathbb{Z} \cong \begin{cases} \mathbb{Z} & \text{if } n \neq 0 \\ \mathbb{Z}/n & \text{if } n = 0 \end{cases} \) where \(n = \text{char } R \).

(Recall “direction of a ring homomorphism.”)

Cor: A field \(F \) contains a subfield isomorphic to \(\mathbb{Z}/p \) (if \(\text{char } F = p \)) or isomorphic to \(\mathbb{Q} \) if \(\text{char } F = 0 \).

Proof: If \(\text{char } F = 0 \), then \(F \) contains a subring \(\cong \mathbb{Z} \).

Here \(\mathbb{Z} \) is an integral domain (it’s a subfield of \(F \)), \(\mathbb{Z} \) is prime (otherwise it would be the trivial ring \(\{0\} \)), hence zero divisors (if \(n \) is composite). Thus \(n = p \) is prime, and \(\mathbb{Z}/p \) is a field.

If \(\text{char } F = p \), then \(F \) contains a subring \(\cong \mathbb{Z}/p \) (it’s also a subring of \(\mathbb{F}_p \), the fraction field of \(\mathbb{Z}/p \), which is \(\mathbb{Q} \)).

Def: The above subfield (\(\cong \mathbb{Z}/p \) or \(\mathbb{Q} \)) is called the prime subfield of \(F \).
For the rest of today's class:

F is a field.

Thus, for every field F, every ideal in $F[x]$ is principal.

Proof: Let F be a field and N an ideal in F.

Case 1: If $N = 0$ then it's principal: $N = \langle 0 \rangle$.

Case 2: $N \neq 0$. Let $g(x)$ be a nonzero element of N of smallest degree. Since $g \in N$, $\langle g \rangle \subseteq N$.

(In any commutative ring R with identity, if N is an ideal and $g \in N$, then $\langle g \rangle \subseteq N$, because any $a \in \langle g \rangle$ is equal to g times some element of R, and $a = g \cdot r \in N$ because $g \in N$, $r \in R$, and N is an ideal. So $\langle g \rangle$ is the smallest ideal of R that contains g.)

To show $N \subseteq \langle g \rangle$, let $f \in N$. Write $f(x) = q(x)g(x) + r(x)$ with $q, r \in F[x]$ and $\deg r < \deg g$. Then $r = f - qg$ is in N; so if $r \neq 0$ then g is not the nonzero element of N of smallest degree, because $r \in N$, $r \neq 0$, and $\deg r < \deg g$; contradiction. Then $r = 0$, so $f = qg$, \(\vdash f \in \langle g \rangle \), $N \subseteq \langle g \rangle$, so $N = \langle g \rangle$ is principal.

(Compare this with the proof of Thm. 6.6.)

Thm: An ideal $\langle p \rangle$ in $F[x]$ is maximal \iff p is irreducible.

Proof: **Case 1:** $p = 0$. Then p is not irreducible and $\langle p \rangle = \langle 0 \rangle$ is not maximal ($\langle 0 \rangle \not\supset \langle x \rangle \supset F[x]$).

Case 2: $p \neq 0$. Then $1 = pp^{-1}$. Since p is a unit in $F[x]$ \iff $1 \in \langle p \rangle \iff \langle p \rangle = F[x]$.

Case 2a: p is reducible \iff $p = fg$ with $f, g \in F[x]$ not constant, \(\vdash \langle p \rangle \not\supset \langle f \rangle \supset F[x] \). p is nonconstant.

$p \in \langle f \rangle$ and $\neq 0$ because if $\langle p \rangle = \langle f \rangle$ then $f \in \langle p \rangle$, so $f = ph$, \(\vdash g = f h \in F[x] \).
So p is irreducible \iff both conditions on the left are false (p not constant and p not reducible).

And $<p>$ is maximal \iff both conditions on the right are false ($<p> \neq F[x]$ and there is no ideal $<f>$ such that $<p> \not\subseteq <f> \subseteq F[x]$).

p is irreducible \iff $<p>$ is maximal. \(\Box\)

Again! This is similar to the situation in \mathbb{Z}:

$<n> = n \mathbb{Z}$ is maximal \iff n is prime. (Hint)