Last time: Every field is (also) an integral domain.

Examples: Zero divisors in \(\mathbb{Z}_n, n > 1 \)

- \(a \in \mathbb{Z}_n \) is a zero divisor \(\Leftrightarrow \) \(a \neq 0 \) and \(\gcd(\text{a,n})
eq 1 \).

Proof: Let \(a \in \mathbb{Z}_n \). Assume \(a \neq 0 \).

If \(\gcd(\text{a,n}) = 1 \) then it's a unit, so it's not a zero divisor.

If \(\gcd(\text{a,n}) \neq 1 \) then let \(b = \frac{\text{n}}{\gcd(\text{a,n})} \). Then \(b \in \mathbb{Z}_n \) and \(b \neq 0 \), hence \(ab \) is a multiple of \(n \), because

\[
\frac{ab}{n} = \frac{a(n/\gcd(\text{a,n}))}{n} = \frac{a}{\gcd(\text{a,n})} \in \mathbb{Z}
\]

\[\therefore \text{Elements of } \mathbb{Z}_n \ (n > 1) \text{ are either 0, zero divisors, or units.} \]

Thm: In a finite ring \(R \) with \(1 \neq 0 \), every element is either a unit, a zero divisor, or \(0 \).

Proof: \(0 \) is not a unit and not a zero divisor.

Let \(a \in R \) with \(a \neq 0 \).

The map \(f: R \to R \) given by \(f(x) = ax \) is either one-to-one or not one-to-one.

If it is one-to-one, then it's onto, so its image contains \(1 \), \(\therefore f(b) = 1 \) for some \(b \in R \), so \(ab = 1 \) for some \(b \in R \).

This is a right multiplicative inverse of \(a \).

Conversely, if \(a \) has a right mult. inv. \(b \), then \(ab = 1 \), so \(y \in R \), \(f(by) = a(by) = (ab)y = y \cdot y = y \), so \(f \text{ is onto} \).

\[\therefore f \text{ is one-to-one} \Leftrightarrow a \text{ has a right multiplicative inverse.} \]
If \(f \) is not 1-1, then \(\exists b \neq c \in \mathbb{R} \) such that \(b + c = a \) and \(f(b) = f(c) \). So \(ab = ac \), \(\therefore a(b-c) = 0 \). Since \(a \neq 0 \), \(a \) is a zero divisor. (We say that \(a \) is a left zero divisor.)

Conversely, if \(a \) is a left zero divisor, then \(ab = 0 \) for some \(b \neq 0 \), \(\therefore f(b) = ab = 0 = a0 = f(a0) \), \(\therefore f \) is not one-to-one. So \(f \) is not 1-1 if and only if \(a \) is a left zero divisor.

\[\therefore a \text{ has a right inverse } \iff f \text{ is 1-1 } \iff a \text{ is not a left zero divisor.} \]

Similarly, using the map \(g : v \mapsto ax + b \), we have:

\[a \text{ has a left inverse } \iff g \text{ is 1-1 } \iff a \text{ is not a right zero divisor.} \]

If \(a \) has a (two-sided) inverse, then it has both a left inverse and a right inverse.

Conversely, suppose \(a \) has a left inverse \(b \) and a right inverse \(c \).

Then \(b = c \) because
\[a \text{ has a multiplicative inverse, so it is a unit.} \]

So \(a \) is a unit \(\iff \) it has both a left and a right inverse
\(\iff \) it is neither a left zero divisor nor a right zero divisor.
\(\iff \) it is not a zero divisor.

(Recall \(\mathbb{Z}/n\mathbb{Z} \).) \(\text{(n>1)} \)

Thm: Every finite integral domain is a field.

Proof: Let \(R \) be a finite integral domain. Then every nonzero element is a unit, because there are no zero divisors in \(R \).
\(\therefore R \) is a field.

Also, \(R \) is commutative and \(R \) has 1 to because there are part of the definition of integral domain, too.
Characteristic of a Ring

Def: Let \(R \) be a ring.

(a). For all \(n \in \mathbb{Z}^+ \) and all \(a \in R \), \(n \cdot a = a + a + \ldots + a \) \((n \) times) \(\)
(a) for the additive group of \(R \).

(b). The characteristic of \(R \) is the smallest element of
the set \(\{ n \in \mathbb{Z}^+ : n \cdot a = 0 \ \forall a \in R \} \),
or \(0 \) if this set is empty.

Note: If \(R \) has a unity element \(1 \), then this set is equal to
\(\{ n \in \mathbb{Z}^+ : n \cdot 1 = 0 \} \).

Proof: "\(\forall \) \(n \in \mathbb{Z}^+ \) if \(n \cdot 1 = 0 \) then
\(n \cdot a = a + a + \ldots + a \) \((n \) times) \[= \left(\underbrace{1 + 1 + \ldots + 1}_{n \text{ times}} \right) a = n \cdot a = 0 \Rightarrow a = 0. \]

" \(\exists \)": If \(n \cdot 0 = 0 \ \forall a \in R \), then we can take \(a = 1 \)
to get \(n \cdot 1 = 0. \)

Examples: \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) all have characteristic 0.
\(\mathbb{Z}_n \) has characteristic \(n. \)

Turning *\(\mathbb{Z}/n\mathbb{Z} \) into a ring:

Define a binary operation on \(\mathbb{Z}/n\mathbb{Z} \) by letting
\[(a + n\mathbb{Z}) \cdot (b + n\mathbb{Z}) = ab + n\mathbb{Z}. \]
This is well defined because if \(a + n\mathbb{Z} = a' + n\mathbb{Z} \) and \(b + n\mathbb{Z} = b' + n\mathbb{Z} \),
then \(a' = a + rn \) and \(b' = b + sn \) for some integers \(r \) and \(s \),
and \[a' \cdot b' = (a + rn)(b + sn) = ab + (as + br + ms)n, \]
so
\[a' \cdot b' + n\mathbb{Z} = ab + n\mathbb{Z}. \]
This multiplication is associative, because
\[((a + n\mathbb{Z})(b + n\mathbb{Z}))c + n\mathbb{Z} = ab + n\mathbb{Z} = a(b + n\mathbb{Z})(c + n\mathbb{Z}). \]
For distributivity:
\[(a + n\mathbb{Z})(b + n\mathbb{Z} + c + n\mathbb{Z}) = a(b + c + n\mathbb{Z}) + n\mathbb{Z} + a(n\mathbb{Z} + c + n\mathbb{Z}). \]
\(\mathbb{Z}/n\mathbb{Z} \) is a ring, and the canonical map (from group theory) is a ring homomorphism.
As we did with quotient groups, we can use the bijection $\mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}_n$ to define a multiplication operation on \mathbb{Z}_n, so that \mathbb{Z}_n becomes a ring isomorphic to $\mathbb{Z}/n\mathbb{Z}$, via the group isomorphism $\mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}_n$.

This is the same as the multiplication operation we defined earlier, because if $a, b \in \mathbb{Z}_n$ and $\psi : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}_n$ is the isomorphism, then $a = \psi(a + n\mathbb{Z})$ and $b = \psi(b + n\mathbb{Z})$.

And by our definition $a \cdot b = \psi(ab + n\mathbb{Z})$ in \mathbb{Z}_n.

So $ab \equiv ab \pmod{n}$.

In \mathbb{Z}_n by the new def.

In \mathbb{Z} by the old def.

Remember when you divide ab by n.

It is in \mathbb{Z}_n by the old def.

The midterm will cover up to here ---

Fermat's "little theorem" is a consequence of the following fact:

If p is prime, then \mathbb{Z}_p^* is a group.

Since \mathbb{Z}_p is a field, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$, so \mathbb{Z}_p^* has order $p-1$.

$a^{p-1} \equiv 1 \pmod{p}$ for all $a \in \mathbb{Z}_p^*$.

Pull that back to \mathbb{Z} by the ring homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_p$ (reduction mod p).