Ideals in $F[x]$ (continued)

Throughout this class, F is a field.

Recall from last time...

Theorem. *All ideals in $F[x]$ are principal.*
Theorem. Let $p(x) \in F[x]$, and let $I = \langle p \rangle$. Then:

(a). $I = \langle 0 \rangle$ if and only if $p = 0$,

(b). I is the unit ideal if and only if p is a nonzero constant, and

(c). I is a maximal ideal if and only if p is irreducible.

Proof. (a) is clear. Note also that $\langle 0 \rangle$ is not maximal, because $\langle 0 \rangle \subsetneq \langle x \rangle \subsetneq F[x]$.

(b). p is a nonzero constant $\iff p$ is a unit in $F[x] \iff \langle p \rangle$ is the unit ideal.

(c). In parts (a) and (b), p is constant and $\langle p \rangle$ is not maximal.
Therefore we may assume that p is not constant and that I is a nonzero proper ideal.

If p is not irreducible, then p is reducible, say $p = fg$ with f and g nonconstant. Considering the ideals $\langle p \rangle \subseteq \langle f \rangle \subseteq F[x]$, we have $\langle f \rangle \neq F[x]$ because f is not constant, and $\langle p \rangle \neq \langle f \rangle$ because $f \in \langle p \rangle$ would imply $p \mid f$, so $\deg f \geq \deg p$, and then g would have to be constant. Therefore $\langle p \rangle \nsubseteq \langle f \rangle \nsubseteq F[x]$, and we conclude that $\langle p \rangle$ is not maximal.

Conversely, assume that p is irreducible. Let $\langle p \rangle \subseteq \langle f \rangle \subseteq F[x]$ be ideals. Since $p \in \langle f \rangle$ we have $p = fg$ for some $g \in F[x]$. Since p is irreducible, f or g must be constant (and they're nonzero because $p \neq 0$). Therefore either $f \in F^*$ (implying $\langle f \rangle = F[x]$) or $g \in F^*$ (which implies $f = g^{-1}p \in \langle p \rangle$, so $\langle f \rangle = \langle p \rangle$). In either case, we do not have $\langle p \rangle \nsubseteq \langle f \rangle \nsubseteq F[x]$. Since this is true for all ideals $\langle f \rangle$ between I and $F[x]$, I is maximal.
A Loose End

Theorem 23.18. Let F be a field, and let $p, r, s \in F[x]$. If p is irreducible and $p \mid rs$, then $p \mid r$ or $p \mid s$.

Proof. Since p is irreducible, $\langle p \rangle$ is maximal, hence prime. Therefore

$$p \mid rs \iff rs \in \langle p \rangle \iff r \in \langle p \rangle \text{ or } s \in \langle p \rangle \iff p \mid r \text{ or } p \mid s.$$
A “Basic Goal”

Stated imprecisely: Let F be a field. Then every nonconstant polynomial in $F[x]$ has a zero in some field containing F as a subfield.

Definition. An extension field of a field F is a field that contains F as a subfield.

The words “E/F is a field extension” mean that E is an extension field of F.

Examples. [Diagram on board; lines indicate field extensions]
Kronecker's Theorem

Theorem ("Basic Goal"). Let F be a field and let $f \in F[x]$ be a nonconstant polynomial. Then there exists a field extension E/F and an element $\alpha \in E$ such that $f(\alpha) = 0$.

Proof. Let p be an irreducible factor of f. It will be enough to find E and α such that $p(\alpha) = 0$.

Let $E = F[x]/\langle p \rangle$. Since p is irreducible, $\langle p \rangle$ is maximal, so E is a field. Let $\psi: F \rightarrow E$ be the composition

$$\psi: F \rightarrow F[x] \rightarrow F[x]/\langle p \rangle = E$$

(so that $\psi(a) = a + \langle p \rangle$). Note that $\psi(1) = 1 + \langle p \rangle \neq 0 + \langle p \rangle$ because $1 \notin \langle p \rangle$. Therefore ψ is injective [why?].

So we can regard E as an extension field of F.

Let $\alpha = x + \langle p \rangle \in E$.

Lemma. For any polynomial $g \in F[x]$, $g(\alpha) = g + \langle p \rangle$.

Proof. Write

$$g(x) = a_n x^n + \cdots + a_0.$$

Then

$$g(\alpha) = (a_n + \langle p \rangle)(x + \langle p \rangle)^n + \cdots + (a_0 + \langle p \rangle)$$

$$= (a_n + \langle p \rangle)(x^n + \langle p \rangle) + \cdots + (a_0 + \langle p \rangle)$$

$$= (a_n x^n + \langle p \rangle) + \cdots + (a_0 + \langle p \rangle)$$

$$= (a_n x^n + \cdots + a_0) + \langle p \rangle$$

$$= g(x) + \langle p \rangle.$$

In particular, $p(\alpha) = p(x) + \langle p \rangle = 0 + \langle p \rangle = 0$ (in E).
Example. \(F = \mathbb{Q} \), \(p(x) = x^2 - 2 \) (irreducible over \(\mathbb{Q} \)). Then \(E = F[x]/\langle x^2 - 2 \rangle \) and \(\alpha = x + \langle x^2 - 2 \rangle \). Note that

\[
\alpha^2 - 2 = x^2 + \langle p \rangle - (2 + \langle p \rangle) = (x^2 - 2) + \langle p \rangle = p + \langle p \rangle = 0 + \langle p \rangle.
\]

Since \(\mathbb{Q}[x] \rightarrow E \) is onto, every element of \(E \) can be written as \(f + \langle p \rangle \) for some \(f \in \mathbb{Q}[x] \).

(Subexample: \(f(x) = x^4 + 3x^3 - x - 1 = (x^2 + 3x + 2)(x^2 - 2) + (5x - 3) \) according to the Division Algorithm, with \(r(x) = 5x - 3 \), so \(f(x) + \langle p \rangle = 5x - 3 + \langle p \rangle = 5\sqrt{2} - 3 \).

Or, just plug in \(\alpha^2 = 2 \): \(f(\alpha) = 2^2 + 6\alpha - \alpha - 1 = 5\alpha - 3 = 5\sqrt{2} - 3 \).
Clicker Questions!

(And please remind Prof. Vojta to return homeworks and pass out handouts)
Structure of \(E \)

Theorem. Let \(F \) be a field, let \(p = F[x] \) be an irreducible polynomial, let \(E \) be the field \(F[x]/\langle p \rangle \), regarded as an extension field of \(F \), and let \(\alpha = x + \langle p \rangle \in E \). Also let \(n = \deg p \). Then every element \(\beta \in E \) can be expressed uniquely as a sum

\[
\beta = b_{n-1} \alpha^{n-1} + \cdots + b_0 \quad \text{with} \quad b_0, \ldots, b_n \in F .
\]

Proof. Existence. Let \(\beta \in E \), say \(\beta = f + \langle p \rangle \) with \(f \in F[x] \). Using the Division Algorithm, write \(f = qp + r \) with \(q, r \in F[x] \) and \(\deg r < n \). Then (since \(p(\alpha) = 0 \) in \(E \)), \(f(\alpha) = r(\alpha) \). By the earlier lemma, we then have \(\beta = f(x) + \langle p \rangle = f(\alpha) = r(\alpha) \), which can be written in the above form.
Uniqueness. If

\[\beta = b_{n-1}\alpha^{n-1} + \cdots + b_0 = b'_{n-1}\alpha^{n-1} + \cdots + b'_0, \]

then \(c_{n-1}\alpha^{n-1} + \cdots + c_0 = 0 \), where \(c_i = b_i - b'_i \) for all \(i \). Let

\[g(x) = c_{n-1}x^{n-1} + \cdots + c_0 \in F[x]. \]

Then \(g(x) + \langle p \rangle = g(\alpha) = 0 \), so \(g \in \langle p \rangle \). For degree reasons, this can happen only if \(g = 0 \). Therefore \(b'_i = b_i \) for all \(i \), which gives uniqueness.
Interlude on Rings and Polynomials

Proposition. Let R be a commutative ring with unity. Let x and y be nonzero elements of R that are not zero divisors. Then $\langle x \rangle = \langle y \rangle$ if and only if $x = uy$ for some unit u of R.

Proof. “\implies”: $\langle x \rangle = \langle y \rangle$ implies $x \in \langle y \rangle$, so $x = ay$ for some $a \in R$. Also, $y \in \langle x \rangle$ implies that $y = bx$ for some $b \in R$. Therefore $x = abx$. Cancelling x gives $1 = ab$, so a and b are units.

“\impliedby”: Assume that $x = uy$, where u is a unit in R. Then $x \in \langle y \rangle$, so $\langle x \rangle \subseteq \langle y \rangle$. Similarly $y = u^{-1}x$ gives $\langle y \rangle \subseteq \langle x \rangle$. Therefore $\langle x \rangle = \langle y \rangle$. □
Corollary. Let F be a field and let $p, q \in F[x]$, both nonzero. Then $\langle p \rangle = \langle q \rangle$ if and only if p and q are (nonzero) constant multiples of each other.

Corollary. Let N be a nonzero ideal in $F[x]$. Then there is a unique monic polynomial $f \in F[x]$ such that $N = \langle f \rangle$.

Proof. We know that $N = \langle f_0 \rangle$ for some nonzero $f_0 \in F[x]$. Take $f = c^{-1} f_0$, where c is the leading coefficient of f_0. This is the desired monic polynomial. It is unique because if $\langle f \rangle = \langle g \rangle$ with f and g monic, then $f = cg$ for some $c \in F$, but $c = 1$ because both f and g are monic. Thus $f = g$. \qed
Algebraic and Transcendental Elements

Definition. Let E/F be a field extension. Then an element $\alpha \in E$ is **algebraic** over F if there is a nonzero polynomial $f \in F[x]$ such that $f(\alpha) = 0$. Otherwise we say that α is **transcendental** over F.

Definition. A **transcendental number** is an element of \mathbb{C} which is transcendental over \mathbb{Q}. An **algebraic number** is defined similarly.

Examples. As noted earlier, π and e (the base of the natural logarithms) are transcendental numbers; $\sqrt{2}$ and 3 are algebraic numbers.
Theorem. Let E/F be a field extension and let $\alpha \in E$. Let $\phi_\alpha : F[x] \to E$ be the evaluation homomorphism $f(x) \mapsto f(\alpha)$. Then α is transcendental over F if and only if ϕ_α is injective.

Proof.

α is transcendental over $F \iff f(\alpha) \neq 0 \text{ for all } 0 \neq f \in F[x]$

$\iff \ker(\phi_\alpha) = \langle 0 \rangle$

$\iff \phi_\alpha$ is injective.
Theorem. Let E/F be a field extension and let $\alpha \in E$ be algebraic over F. Then there is an irreducible polynomial $p \in F[x]$ such that $p(\alpha) = 0$. It is a nonzero element of $\ker \phi_\alpha$ of smallest degree. If we require it to be monic, then it's unique, and is the unique monic element of $\ker \phi_\alpha$ of smallest degree.
Proof. By Theorem 27.24, \(\ker \phi_\alpha = \langle p \rangle \) for some \(p \in F[x] \) (recall that \(\phi_\alpha \) is a homomorphism \(F[x] \to E \)).

We claim that \(p \) is irreducible. To show this, assume that \(p \) is not irreducible. Since \(p \) is nonconstant, it must be reducible. Therefore \(p = fg \) with \(f \) and \(g \) nonconstant. Then \(f(\alpha)g(\alpha) = p(\alpha) = 0 \); hence \(f(\alpha) = 0 \) or \(g(\alpha) = 0 \). This gives \(f \in \ker \phi_\alpha \) or \(g \in \ker \phi_\alpha \); therefore \(p \mid f \) or \(p \mid g \); and that gives \(\deg f \geq \deg p \) or \(\deg g \geq \deg p \), and that implies that \(g \) or \(f \) must be constant, respectively. This is a contradiction, so \(p \) is irreducible.

You can make \(p \) monic (divide it by its leading coefficient).

Then \(p \) is the unique monic irreducible polynomial such that \(p(\alpha) = 0 \). Indeed, if \(q \) is another such polynomial, then \(q(\alpha) = 0 \), so \(q \in \ker \phi_\alpha = \langle p \rangle \), so \(p \mid q \), and this gives \(q = cp \) for some \(c \in F[x] \). But since \(q \) is irreducible, \(c \) must be a constant. In fact, since both \(p \) and \(q \) are monic, \(c = 1 \), so \(q = p \). \(\square \)
Notes

(1) Of all nonzero \(f \in F[x] \) such that \(f(\alpha) = 0 \), \(p \) has the smallest degree

(2) All \(f \in F[x] \) such that \(f(\alpha) = 0 \) are multiples of \(p \).

Definition. This (monic) polynomial \(p(x) \) is called the (monic) irreducible polynomial of \(\alpha \) over \(F \), and is written \(\text{irr}(\alpha, F) \) or \(\text{irr}_{\alpha, F} \) or \(\text{irr}_{\alpha, F}(x) \). The degree of \(\alpha \) over \(F \) is the degree of \(\text{irr}_{\alpha, F}(x) \), and is written \(\deg(\alpha, F) \).

Note: The image of \(\phi_\alpha : F[x] \to E \) is denoted \(F(\alpha) \). We have

\[
F(\alpha) \cong F[x]/\langle p \rangle.
\]

It is a field (because \(p \) is irreducible, hence \(\langle p \rangle \) is maximal).

\(F(\alpha) \) is the smallest subfield of \(E \) that contains both \(F \) and \(\alpha \) (this follows from \(\beta = b_{n-1}\alpha^{n-1} + \cdots + b_0 \) with \(b_{n-1}, \ldots, b_0 \in F \), as above).
Finis

Have a good weekend!

Good luck on your exams