Corollaries of the Factor Theorem

Throughout today’s class, F is a field.

Recall that the Factor Theorem says that for all $f \in F[x]$ and all $a \in F$,

$$f(a) = 0 \iff (x - a) \mid f.$$

Corollary. A nonzero polynomial $f \in F[x]$ of degree n can have at most n zeroes in F.

Proof. Let a_1, \ldots, a_r be the (distinct) zeroes of f in F. We need to show that $r \leq n$. We will use induction on n.

Base Case. If $n = 0$ then f is a constant polynomial $c \neq 0$, so f has no zeroes.

Inductive Step. Assume $n > 0$. If $r = 0$ then $r \leq n$ and we’re done. Otherwise a_1 is a zero of f, so $(x - a_1) \mid f$, say $f = (x - a_1)g$. Here $g \in F[x]$, $\deg g = (\deg f) - 1 = n - 1$, and g has zeroes a_2, \ldots, a_r (and also possibly a_1). (This is because $0 = f(a_1) = (a_i - a_1)g(a_i)$ and $a_i - a_1 \neq 0$ for all $i > 1$.) Therefore, by the inductive hypothesis, $r - 1 \leq (\text{number of zeroes of } g) \leq n - 1$, which gives $r \leq n$. □

Corollary. If G is a finite subgroup of F^*, then G is cyclic.

Proof. Let $n = |G|$ and suppose that G is not cyclic. Then there is an $m < n$ such that $g^m = 1$ for all $g \in G$ (exercise). But then $f(x) = x^m - 1$ has $n > m$ zeroes, namely all elements of G. This is a contradiction. □

Corollary. If F is a finite field (for example, \mathbb{Z}_p), then F^* is cyclic.

(This is used frequently in cryptography.)

Irreducible Polynomials

Definition. Let $f \in F[x]$.

(a). We say that f is **irreducible over** F, or **irreducible in** $F[x]$, if f is nonconstant and cannot be factored as $f = gh$ with nonconstant $g, h \in F[x]$.

(b). We say that f is **reducible over** F, or **reducible in** $F[x]$, if it can be factored in the above way.

Irreducible elements of $F[x]$ play a similar role as prime numbers in \mathbb{Z}.

Therefore $f \in F[x]$ is exactly one of: (i) reducible (in $F[x]$), (ii) irreducible (in $F[x]$), (iii) a unit in $F[x]$, or (iv) zero.

Example. $x^2 + 1$ is irreducible in $\mathbb{R}[x]$, but reducible in $\mathbb{C}[x]$.

Note: Let $f \in F[x]$ and $c \in F^*$. Then f is irreducible in $F[x]$ if and only if cf is.

Useful fact: If $f \in F[x]$ has degree 2 or 3, then it is reducible in $F[x]$ if and only if it has a zero in F. This is because if it factors, then at least one of the factors must be linear. (The converse holds by the Factor Theorem.)
Example. \(x^3 + x + 1 \) is irreducible in \(\mathbb{Z}_2[x] \). (Neither 0 nor 1 is a zero of the polynomial.)

Example. \(f(x) = x^4 + x^3 + 1 \) is irreducible in \(\mathbb{Z}_2[x] \). Indeed, neither 0 nor 1 is a zero of \(f \), so the only possible factorizations would be \(f = gh \) with \(g \) and \(h \) quadratic. Also, neither \(g \) nor \(h \) would have zeroes in \(\mathbb{Z}_2 \) (those would also be zeroes of \(f \)). There are four polynomials of degree 2 in \(\mathbb{Z}_2[x] \):

\[
x^2, \quad x^2 + x, \quad x^2 + 1, \quad \text{and} \quad x^2 + x + 1.
\]

Of these, only \(x^2 + x + 1 \) has no zeroes. Therefore if \(f \) factors then we must have \(g = h = x^2 + x + 1 \). But then \(f = gh = (x^2 + x + 1)^2 = x^4 + x^2 + 1 \), contradiction. Therefore \(f \) is irreducible.

Gauss's Lemma

Theorem (Gauss’s Lemma). Let \(g, h \in \mathbb{Z}[x] \). Suppose that the gcd of the coefficients of \(g \) is 1, and that the same is true for \(h \). Then the same is true for the product \(gh \).

Proof. Omitted.

Corollary. Let \(f \in \mathbb{Z}[x] \). If \(f \) can be factored in \(\mathbb{Q}[x] \) as \(f(x) = g(x)h(x) \), then it can be factored in \(\mathbb{Z}[x] \) as \(f(x) = \tilde{g}(x)\tilde{h}(x) \) with \(\deg \tilde{g} = \deg g \) and \(\deg \tilde{h} = \deg h \).

(In fact, there is an \(a \in \mathbb{Q}^* \) such that \(\tilde{g} = ag \) and \(\tilde{h} = a^{-1}h \).)

Proof. Omitted.

Definition. A polynomial is monic if it is nonzero and its leading coefficient is 1.

Corollary. If a monic polynomial \(f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x] \) has a zero \(m \) in \(\mathbb{Q} \), then \(m \in \mathbb{Z} \) and \(m \mid a_0 \).

Proof. If \(f \) has a zero \(m \in \mathbb{Q} \), then \(f = gh \) in \(\mathbb{Q}[x] \) with \(g(x) = x - m \). By the second corollary, there is an \(a \in \mathbb{Q}^* \) such that both \(\tilde{g} = ag \) and \(\tilde{h} = a^{-1}h \) lie in \(\mathbb{Z}[x] \). Since \(g \) and \(h \) are monic, the leading coefficients of \(\tilde{g} \) and \(\tilde{h} \) are \(a \) and \(a^{-1} \), respectively, so \(a \) must be \(\pm 1 \). We may assume \(a = 1 \), so \(\tilde{g} = x - m \). This lies in \(\mathbb{Z} \), so \(m \in \mathbb{Z} \). Also \(h = \tilde{h} \) is in \(\mathbb{Z}[x] \), so its constant coefficient is \(b_0 \in \mathbb{Z} \) such that \(mb_0 = a_0 \). This gives \(m \mid a_0 \).

Clicker Questions!

(And please remind Prof. Vojta to return homeworks and pass out handouts)
Theorem (Eisenstein Criterion). Let \(p \in \mathbb{Z} \) be prime, and let
\[
f(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x].
\]
Suppose: (1) \(p \nmid a_n \), (2) \(p \mid a_i \) for all \(i < n \), and (3) \(p^2 \nmid a_0 \). Then \(f \) is irreducible over \(\mathbb{Q} \).

Proof. See book.

Example. \(x^2 - 2 \) is irreducible over \(\mathbb{Q} \) (and therefore \(\sqrt{2} \notin \mathbb{Q} \)).

Proof 1. Use the Eisenstein criterion with \(p = 2 \).

Proof 2. Assume it is reducible. Then it has a zero \(m \in \mathbb{Q} \), hence a zero \(m \in \mathbb{Z} \). Such a root must satisfy \(m \mid 2 \), so \(m = \pm 1 \) or \(m = \pm 2 \). Checking these show that there is no such zero, so \(x^2 - 2 \) is irreducible.

Unique Factorization in \(F[x] \)

Lemma. Let \(p, r, s \in F[x] \) with \(p \) irreducible. If \(p \mid rs \) then \(p \mid r \) or \(p \mid s \).

Proof. Later. \(\Box \)

Lemma. Let \(p, r_1, \ldots, r_n \in F[x] \) with \(p \) irreducible and \(n \in \mathbb{N} \). If \(p \mid r_1 \ldots r_n \) then \(n > 0 \) and \(p \mid r_i \) for some \(i \).

Proof. When \(n = 0 \) this is impossible (due to degrees). When \(n = 1 \) it is trivial, and when \(n = 2 \) this is the previous lemma. For \(n > 2 \) it follows by induction. \(\Box \)

Theorem. Any nonconstant polynomial in \(F[x] \) can be factored in \(F[x] \) into a product of irreducible polynomials in \(F[x] \).

Moreover, such a factorization is unique, up to permuting the factors and multiplying them by nonzero constants (in \(F \)).

Proof. Existence: Clear (keep factoring until you can’t anymore).

[How do you know it eventually has to stop?]

Uniqueness: Let \(f \in F[x] \) be the polynomial to be factored. Suppose that \(f = p_1 \ldots p_r = q_1 \ldots q_s \) with all \(p_i \) and \(q_j \) irreducible.

We will use induction on \(r \). Since \(f \) is not constant, we have \(r, s > 0 \).

Base case. If \(r = 1 \) then \(f = p_1 \) is irreducible, so \(s \leq 1 \), hence \(s = 1 \) and \(p_1 = q_1 \).

Inductive step. If \(r > 1 \) then \(p_1 \mid q_j \) for some \(j \). Then \(p_1 u = q_j \) for some \(j \) and some \(u \in F[x] \). Since \(q_j \) is irreducible and \(p_1 \) is not constant, \(u \) is constant, necessarily nonzero. After permuting indices we may assume that \(j = 1 \). Since \(r > 1 \), we may replace \(p_1 \) with \(up_1 \) and \(p_2 \) with \(u^{-1}p_2 \) to obtain \(p_1 = q_1 \) (the new \(p_1 \) and \(p_2 \) are still irreducible).

Now cancel \(p_1 \) from both sides to get \(p_2 \ldots p_r = q_2 \ldots q_s \). Since \(r > 1 \) this common value is nonconstant. By the inductive hypothesis, \(r = s \) and the factors are the same up to permutation and multiplication by nonzero constants. \(\Box \)

[Compare this with the proof of unique factorization for (positive) integers.]
Ring Homomorphisms

Recall: A ring homomorphism \(\phi: R \rightarrow R'\) is a function \(\phi: R \rightarrow R'\) such that \(\phi(a + b) = \phi(a) + \phi(b)\) and \(\phi(ab) = \phi(a)\phi(b)\) for all \(a, b \in R\).

Theorem. Let \(\phi: R \rightarrow R'\) be a ring homomorphism. Then:

1. \(\phi(0) = 0'\) (where 0 and 0' are the additive identities in \(R\) and \(R'\), respectively)
2. \(\phi(-a) = -\phi(a)\) for all \(a \in R\)
3. If \(S \leq R\) then \(\phi[S] \leq R'\)
4. If \(S' \leq R'\) then \(\phi^{-1}[S'] \leq R\)
5. If \(R\) has unity \(1\) then \(\phi[R]\) has unity \(\phi(1)\).

Proof. See book. (Compare with Thm. 13.12.)

Caution: In (5), the unity \(\phi(1)\) for \(\phi[R]\) need not be the unity for all of \(R'\); in fact, \(R'\) need not have a unity element.

Example. \(\phi: \mathbb{Z} \rightarrow \mathbb{Z} \times 2\mathbb{Z}\) given by \(\phi(n) = (n, 0)\). \(\phi(1) = (1, 0)\) is not a unity element for \(\mathbb{Z} \times 2\mathbb{Z}\) (which has no unity element).

Kernels and Ideals

Recall: The kernel of a ring homomorphism \(\phi: R \rightarrow R'\) is \(\ker \phi = \{a \in R : \phi(a) = 0\}\). It is a subring of \(R\) because it equals \(\phi^{-1}[[0]]\) and \(\{0\}\) is a subring of \(R'\).

Proposition. Let \(\phi: R \rightarrow R'\) be a ring homomorphism and let \(I = \ker \phi\). Then

1. \(\langle I, + \rangle\) is a subgroup of \(\langle R, + \rangle\), and
2. \(ra \in I \text{ and } ar \in I\) for all \(a \in I\), \(r \in R\).

Proof. (1) is from group theory. For (2), \(\phi(ra) = \phi(r)\phi(a) = \phi(r) \cdot 0 = 0\), so \(ra \in I\) for all \(r \in R\) and \(a \in I\). Similarly, \(ar \in I\).

Definition. An ideal in a ring \(R\) is a subset \(I \subset R\) such that

1. \(\langle I, + \rangle\) is a subgroup of \(\langle R, + \rangle\), and
2. \(rI \subseteq I\) and \(Ir \subseteq I\) for all \(r \in R\). (Here \(rI = \{ra : a \in I\}\), \(Ir = \{ar : a \in I\}\).

Therefore the kernel of a ring homomorphism \(R \rightarrow R'\) is an ideal in \(R\).

Also, if \(I\) is an ideal in \(R\) then \(I\) is a subring of \(R\) (but not vice versa).

Examples of Ideals in a Ring \(R\)

1. In any ring \(R\), \(\{0\}\) and \(R\) are ideals.
2. Assume that \(R\) is commutative with unity and \(a \in R\). Then \(aR = \{ar : r \in R\}\) is an ideal in \(R\), called the principal ideal generated by \(a\) and denoted \(\langle a \rangle\).

(Why do we require \(R\) to be commutative?)
(Why do we require \(R\) to have unity?)

Finis

Have a good weekend!