Fields of Quotients (Cont’d)

Theorem. Let F be a field of quotients for an integral domain D, and let L be any field that contains D as a subring. Then there is a unique homomorphism $\psi: F \to L$ such that $\psi(a) = a$ for all $a \in D$.

Proof. See the book for the existence of ψ, or use:

$$\psi([a,b]) = \psi(a/b) = \psi(a)/\psi(b) = a/Lb.$$

One also needs to show that it is well defined and is a homomorphism.

Uniqueness: It has to be as given. In detail, let $x \in F$ be given. Then $x = [(a,b)] = a/Fb$ for some $a,b \in D$, $b \neq 0$. Then $bx = a$ in D, hence in F. So $\psi(b)\psi(x) = \psi(a)$, therefore $b\psi(x) = a$, so $\psi(x) = a/Lb$. □

Integral Domains as Subrings of Fields

We also proved: Every integral domain is a subring of a field, which contains the unity element of the field.

Conversely, let F be a field let 1_F be its unity element, and let R be a subring of F that contains 1_F. Then R is an integral domain:

- It is commutative because F is
- It has $1 \neq 0$ because F does and $1_F \in R$
- It has no zero divisors because F has none.

So:

A ring R is an integral domain

$$\iff$$ it is a subring of a field and contains the field’s unity element

$$\iff$$ it is a subring of a field and has $1 \neq 0$.

(See Ex. 19.23: If F is a division ring then $\{x \in F : x^2 = x\} = \{0,1\}$.)

Polynomials

Definition. Let R be an integral domain. We define the set $R[x]$ to be the set of all formal infinite sums $a_0 + a_1x + a_2x^2 + \ldots$ such that all but finitely many of the a_i are zero.

We define a binary operation $+$ on $R[x]$ by termwise addition:

$$(a_0 + a_1x + a_2x^2 + \ldots) + (b_0 + b_1x + b_2x^2 + \ldots) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \ldots .$$

We define a binary operation \cdot on $R[x]$ as you’ve learned in grade school:

$$(a_0 + a_1x + a_2x^2 + \ldots) \cdot (b_0 + b_1x + b_2x^2 + \ldots) = c_0 + c_1x + c_2x^2 + \ldots ,$$
where
\[c_n = \sum_{i=0}^{n} a_i b_{n-i} \text{ for all } n \in \mathbb{N} . \]

Theorem. With the above definitions, \(R[x] \) is a ring. It also contains \(R \) as a subring.

Proof. To show that it is a ring: Associativity of \(\cdot \) is proved on page 200, and the distributive law is Ex. 26.

To show that it contains \(R \) as a subring: The map \(R \to R[x] \) given by \(a \mapsto a \) is a ring homomorphism, and is injective. \(\square \)

Proposition. Since \(R \) is assumed to be an integral domain, \(R[x] \) is also an integral domain.

Proof. The ring \(R[x] \) is commutative because \(R \) is, and it has \(1 \neq 0 \) because \(R \) does (with the same unity element). To show that it has no zero divisors, let
\[f = a_0 + a_1 x + a_2 x^2 + \ldots \quad \text{and} \quad g = b_0 + b_1 x + b_2 x^2 + \ldots \]
be nonzero elements of \(R[x] \). Then there are integers \(n \) and \(m \) such that \(a_n \neq 0 \) but \(a_i = 0 \) for all \(i > n \) and \(b_m \neq 0 \) but \(b_j = 0 \) for all \(j > m \). Then
\[c_{n+m} = \sum_{i=0}^{n-1} a_i b_{n+m-i} + a_n b_m + \sum_{i=n+1}^{n+m} a_i b_{n+m-i} = a_n b_m . \]
Indeed, the first sum vanishes because \(n + m - i > m \), and therefore \(b_{n+m-i} = 0 \) for all \(i < n \); and the second sum vanishes because \(a_i = 0 \) for all \(i > n \). Therefore \(fg \neq 0 \) because its coefficient of \(x^{n+m} \) is \(a_n b_m \neq 0 \). \(\square \)

Some Notes

- In the definition of \(R[x] \) the book allows \(R \) to be any ring, but we are requiring \(R \) to be an integral domain.
- \(\mathbb{Q} \) is a field, but \(\mathbb{Q}[x] \) is not (\(x \) has no inverse).
- If \(a_i = 0 \) for all \(i > n \) then we may write \(a_0 + a_1 x + a_2 x^2 + \ldots \) as the finite sum \(a_0 + \cdots + a_n x^n \) or \(a_n x^n + \cdots + a_0 \).
- In algebra, we don’t have infinite sums, unless:
 1. all but finitely many of the terms are zero (so it’s really a finite sum), or
 2. there is some notion of convergence in the ring (not in Math 113).

Polynomials in Several Variables, and Rational Functions

Definition. Let \(R \) be an integral domain. For all \(n \in \mathbb{N} \), the polynomial ring \(R[x_1, \ldots, x_n] \) is defined to be \(R \) if \(n = 0 \), or \((R[x_1, \ldots, x_{n-1}])[x_n] \) if \(n > 0 \).

Definition. Let \(F \) be a field and let \(n \in \mathbb{N} \). Then the **field of rational functions in \(n \) indeterminates** \(x_1, \ldots, x_n \) **over** \(F \) is the field of quotients of \(F[x_1, \ldots, x_n] \).
Clicker Questions!

Evaluation Homomorphisms

Theorem. Let \(F \leq E \) be fields, let \(\alpha \in E \), and let \(x \) be an indeterminate.
Then the map \(\phi_\alpha : F[x] \to E \) defined by
\[
\phi_\alpha(a_n x^n + \cdots + a_1 x + a_0) = a_n \alpha^n + \cdots + a_1 \alpha + a_0
\]
is a well-defined homomorphism from \(F[x] \) to \(E \). This map is called evaluation at \(\alpha \). It also satisfies (1) \(\phi_\alpha(a) = a \) for all \(a \in F \) and (2) \(\phi_\alpha(x) = \alpha \) for all \(\alpha \in E \).

Proof. (1) and (2) are clear.

Addition:
\[
\phi_\alpha \left(\sum a_i x^i + \sum b_i x^i \right) = \phi_\alpha \left(\sum (a_i + b_i) x^i \right) = \sum (a_i + b_i) \alpha^i = \sum a_i \alpha^i + \sum b_i \alpha^i
\]
\[
= \phi_\alpha \left(\sum a_i x^i \right) + \phi_\alpha \left(\sum b_i x^i \right).
\]

Multiplication: Similar but harder. □

Examples
(1). \(\phi_0 : F[x] \to F \) is \(\sum a_i x^i \mapsto a_0 \)
(2) Take \(F = \mathbb{Q} \) and \(E = \mathbb{R} \). It is a deep theorem in number theory that \(\phi_\pi : \mathbb{Q}[x] \to \mathbb{R} \) and \(\phi_\epsilon : \mathbb{Q}[x] \to \mathbb{R} \) are injective.

Polynomials vs. Functions

For us, it’s OK to write \(f(\alpha) \) instead of \(\phi_\alpha(f) \).

However: Polynomials in \(R[x] \) are not the same as functions \(R \to R \).

You know from grade school that if \(f \in \mathbb{R}[x] \) and \(\phi_\alpha(f) = 0 \) for all \(\alpha \in \mathbb{R} \) then \(f = 0 \).

But: Let \(p \) be a prime number. Then
\[
\phi_\alpha(x^p - x) = 0 \quad \text{for all } \alpha \in \mathbb{Z}_p
\]
(by Fermat). So both \(x^p - x \in \mathbb{Z}_p[x] \) and \(0 \in \mathbb{Z}_p[x] \) give rise to the same function \(\mathbb{Z}_p \to \mathbb{Z}_p \).

Our “Basic Goal”

Definition. Let \(F \leq E \) be fields, and let \(f \in F[x] \) (with \(x \) an indeterminate).
Then a zero of \(f \) in \(E \) is an element \(\alpha \in E \) such that \(\phi_\alpha(f) = 0 \) (i.e., \(f(\alpha) = 0 \)).

The basic goal for much of the remainder of the course is:
Theorem (29.3). Let F be a field. Then for any nonconstant polynomial $f \in F[x]$ there is a field E, containing F as a subfield, such that f has a zero in E.

Note: If $F \leq E$ and $f, g \in F[x]$ are such that their product fg has a zero $\alpha \in E$, then α is a zero of f or of g (or both):

$$(fg)(\alpha) = 0 \iff f(\alpha)g(\alpha) = 0 \iff f(\alpha) = 0 \text{ or } g(\alpha) = 0.$$

The Degree of a Polynomial

Definition. Let R be an integral domain and let $f = \sum a_i x^i \in R[x]$ be a polynomial (in one variable). Then the degree of f, denoted $\deg f$, is the largest integer n such that $a_n \neq 0$, or 1 if $f = 0$.

Note that $\deg(fg) = \deg f + \deg g$ for all $f, g \in R[x]$.
(The book says that $\deg f$ is undefined when $f = 0$; we are defining it to be $-\infty$.)

The Division Algorithm for $F[x]$

Theorem (Division Algorithm for $F[x]$). Let F be a field, and let f and g be elements of $F[x]$ with $g \neq 0$.

Then there are unique polynomials $q, r \in F[x]$ such that

$$f = qg + r \quad \text{and} \quad \deg r < \deg g.$$

Proof. Existence. Write

$$f(x) = a_n x^n + \cdots + a_0$$
and $$g(x) = b_m x^m + \cdots + b_0$$

with $b_m \neq 0$ (we don’t need to assume $a_n \neq 0$ or $m > 0$).

Let $S = \{f - sg : s \in F[x]\}$ and let $r \in S$ be an element of smallest degree. Then $r = f - sg$ for some $q \in F[x]$, so $f = qg + r$, and we’ll be done if we can show that $\deg r < m$.

Suppose not. Then $r(x) = c_t x^t + \cdots + c_0$ with $c_t \neq 0$ and $t \geq m$. Also

$$f - qg - \left(\frac{c_t}{b_m}\right)x^{t-m}g = r(x) - \left(\frac{c_t}{b_m}\right)x^{t-m}g$$

$$= (c_t x^t + \cdots + c_0) - \frac{c_t}{b_m} (b_m x^t + b_{m-1} x^{t-1} + \cdots + b_0 x^{t-m})$$

$$= \left(\frac{c_t}{b_m} - b_{m-1}\right) x^{t-1} + \text{(lower-order terms)}.$$
This is an element of S (with $s(x) = q(x) - (c_t/b_m)x^{t-m}$) of degree $< t$, contradicting the choice of $r(x)$.

Therefore we have q and r with $\deg r < m$.

Uniqueness. See book. \hfill \Box

Example. Long division of $x^2 + x + 1$ by $x - 2$ (on board).

Definition. Let F be a field and let $f, g \in F[x]$. Then we say that $f \mid g$ (f divides g) if $f \cdot q = g$ for some $q \in F[x]$.

If $f \neq 0$ then $f \mid g$ is equivalent to $g/f \in F[x]$. In the context of the division algorithm, $f \mid g$ if and only if the division algorithm gives $g = qf + r$ with $r = 0$.

Corollary (of the Division Algorithm). Let $f \in F[x]$ and let $a \in F$. Then a is a zero of f if and only if $(x - a) \mid f$.

Proof. There exist $q, r \in F[x]$ such that $f(x) = q(x)(x - a) + r(x)$ and $\deg r < 1$. Since $\deg r < 1$, r is a constant c. Then

$$c = r(a) = f(a) - q(a)(a - a) = f(a) - q(a) \cdot 0 = f(a).$$

So $f(a) = 0$ if and only if $r = 0$, if and only if $(x - a) \mid f$. \hfill \Box