Rings

Definition. A ring \(\langle R; +, \cdot \rangle \) is a set \(R \), given with binary operations \(+\) ("addition") and \(\cdot \) ("multiplication"), that satisfies:

- \(R_1 \): \(\langle R; + \rangle \) is an abelian group, written additively (so we have 0 and \(-a \) and \(a - b \))
- \(R_2 \): multiplication is associative
- \(R_3 \): the distributive laws hold for all \(a, b, c \in R \):
 \[
 a(b + c) = ab + ac \quad \text{and} \quad (a + b)c = ac + bc .
 \]

(We typically omit \(\cdot \), and use the usual rules that multiplication is done before addition and subtraction. As above.)

Definition. A ring is commutative if its multiplication operation is commutative.

Theorem 18.8. In any ring \(R \),

1. \(0a = a0 = 0 \) for all \(a \in R \)
2. \(a(-b) = (-a)b = -ab \) for all \(a, b \in R \)
3. \((-a)(-b) = ab \) for all \(a, b \in R \).

Proof. (1) \(0a + 0a = (0 + 0)a = 0a = 0a + 0 \); now cancel \(0a \).

2. \(ab + a(-b) = a(b - b) = a0 = 0 = ab + (-ab) \); cancel \(ab \) to get \(a(-b) = -ab \).

\(ab + (-a)b = (a - a)b = 0b = 0 = ab + (-ab) \); cancel \(ab \) to get \((-a)b = -ab \).

3. Apply (2) twice to get \((-a)(-b) = -(ab) = ab \). \(\square \)

Examples of Rings

- \(\mathbb{Z} \), \(\mathbb{Q} \), \(\mathbb{R} \), and \(\mathbb{C} \). These always have the usual addition and multiplication operations
- \(\langle \mathbb{Z}_n; +, \cdot \rangle \) for all \(n \in \mathbb{Z}^+ \) (\(a \cdot n \) \(b \) is the remainder you get when you divide \(ab \in \mathbb{Z} \) by \(n \))
- \(M_n(\mathbb{R}) \) for all \(n \in \mathbb{Z}^+ \): this is the ring of \(n \times n \) matrices with entries in \(\mathbb{R} \), under matrix addition and matrix multiplication. It is not commutative.
- the (trivial) ring \(\langle \{0\}, +, \cdot \rangle \) (the same as \(\mathbb{Z}_1 \))
- If \(R_1, \ldots, R_n \) are rings, then so is \(R_1 \times \cdots \times R_n \), with \(+ \) and \(\cdot \) defined componentwise. If \(R_1, \ldots, R_n \) are commutative, then so is \(R_1 \times \cdots \times R_n \).

Unity Elements

Definition. A unity element of a ring \(R \) is an identity element for its multiplication operation. It is customarily denoted \(1 \). (\(\langle R; \cdot \rangle \) is not (usually) a group, but it is a binary algebraic structure, so \(1 \) is unique if it exists: \(1 = 1' = 1'' \).)

"\(R \) is a ring with unity" means what it says

1
“R is a ring with unity 1” is the same as above, and it also says that the unity element is called “1”.
“R is a ring with unity 1 ≠ 0” is the same as above, and it also requires that R ≠ (0).

Homomorphisms

Definition. A homomorphism from a ring R to a ring R' is a function $\phi: R \to R'$ such that
(a). $\phi(a + b) = \phi(a) + \phi(b)$ for all $a, b \in R$ and
(b). $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$.

An isomorphism is a bijective homomorphism.

Definition. The kernel of a ring homomorphism $\phi: R \to R'$ is the subset
$$\ker \phi = \{a \in R : \phi(a) = 0\}.$$

As is the case for groups, a ring homomorphism is injective if and only if its kernel is trivial.

Examples of Ring Homomorphisms

- The inclusion maps $(0) \to Z \to Q \to R \to C$ are homomorphisms.
- For all $n \in Z^+$ the “reduction modulo n” map $\gamma: Z \to Z_n$ is a ring homomorphism (18.11).
- The map $(n \mapsto 2n): Z \to 2Z$ is a group homomorphism but not a ring homomorphism.
- For any ring R the identity map id$_R: R \to R$ is a ring homomorphism.
- If $\phi: R \to R'$ and $\psi: R' \to R''$ are ring homomorphisms then so is their composition $\psi \circ \phi: R \to R''$.

Units, etc.

Definition. Let R be a ring with unity 1 (we will not assume 1 ≠ 0 here). Then a unit in R is an element with a multiplicative inverse.

Examples

- 0 is a unit in the trivial ring (≠ the book).
- The sets of units in Q, R, and C are Q^*, R^*, and C^*, respectively.
- The units in Z are $±1$.
- What are the units in Z_n?

For any ring R with unity, its units form a group under multiplication. This is denoted R^* and called the group of units of R.
Division Rings and Fields

Definition. A **division ring** or **skew field** is a ring R with $1 \neq 0$ such that all nonzero elements are units (i.e., $\langle R \setminus \{0\}, \cdot \rangle$ is a group).

Definition. A **field** is a commutative division ring.

Examples of fields include \mathbb{Q}, \mathbb{R}, and \mathbb{C} (but not \mathbb{Z}).

Definition. A **strictly skew field** is a noncommutative division ring.

Zero Divisors

Definition. A **zero divisor** in a ring R is a nonzero element $a \in R$ such that $ab = 0$ or $ba = 0$ for some nonzero $b \in R$.

Let R be a ring with 1. If $a \in R$ is a zero divisor then a is not a unit.

Proof. If $a \in R$ is a unit and $ab = 0$, then
$$b = ab^{-1} = a^{-1}0 = 0,$$

and similarly if $ba = 0$ then $b = 0$. Therefore a is not a zero divisor. \hfill \Box

Units and Zero Divisors in \mathbb{Z}_n

Let $n \in \mathbb{Z}^+$, let a be a nonzero element of \mathbb{Z}_n, and let $g = \gcd(a, n)$. Since then $0 < a < n$, we have $0 < g < n$.

Now if $g = 1$ then there are $x, y \in \mathbb{Z}$ such that $xa + yn = 1$, so $xa \equiv 1 \pmod{n}$, and therefore $x \mod n$ (the remainder you get when you divide x by n) is a multiplicative inverse for a in \mathbb{Z}_n.

If $g > 1$ then $0 < n/g < n$, so $n/g \in \mathbb{Z}_n$, and $a \cdot (n/g) = (a/g)n$ is a multiple of n, so $a \cdot (n/g) = 0$ in \mathbb{Z}_n. Therefore a is a zero divisor in \mathbb{Z}_n, so it is not a unit.

Therefore, we have proved:

$$\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : \gcd(a, n) = 1\}.$$

We also showed that the set of zero divisors in \mathbb{Z}_n is

$$\{a \in \mathbb{Z}_n : a \neq 0 \text{ and } \gcd(a, n) \neq 1\}.$$