Thm.: No permutation in S_n ($n \in \mathbb{N}$) can be written both as a product of an odd number of transpositions and as a product of an even number of transpositions.

Proof #2: We already handled the case $n < 2$.

If $n \geq 2$, then we show: Let $\sigma \in S_n$ and let $\tau = (i, j)$ be a transposition in S_n. Then:

\[(\text{# of orbits in } \sigma) - (\text{# of orbits in } \sigma \tau) = \pm 1.\]

Case I: Assume i and j are in different orbits of σ.

Writing σ as a product of disjoint cycles, we have

\[\sigma = (i, a_1, a_2, \ldots, a_r)(j, b_1, b_2, \ldots, b_s). \quad \text{(other cycles)}\]

Then also

\[\sigma \tau = (i, a_1, \ldots, a_r, j, b_1, \ldots, b_s). \quad \text{(other cycles)}\]

Here we used:

\[(i, a_1, \ldots, a_r)(j, b_1, \ldots, b_s)(i, j) = (i, a_1, \ldots, a_r, j, b_1, \ldots, b_s) \quad \text{(this is true even if } r = 0 \text{ or } s = 0 \text{ on both)}\]

So $\sigma \tau$ has one less orbit than σ.

Case II: Assume i and j are in the same orbit of σ.

Then the identity

\[\sigma \tau = (i, a_1, \ldots, a_r, j, b_1, \ldots, b_s)(i, j) = (i, a_1, \ldots, a_r)(j, b_1, \ldots, b_s)\]

leads to the conclusion that $\sigma \tau$ has one more orbit than σ. (The argument is similar.)
Therefore, by induction on m (starting with m = 0, in which case \(\sigma = e \) has n orbits):

If \(\sigma \) can be written as a product of m transpositions, then \((n - (\# \text{ of orbits of } \sigma)) \) has the same parity as m.

This number \((n - (\# \text{ of orbits of } \sigma)) \) depends only on \(\sigma \), so no matter how you write \(\sigma \) as a product of transpositions, the number of transpositions must be:

- even if \((n - (\# \text{ of orbits of } \sigma)) \) is even,
- odd if \(n - (\# \text{ of orbits of } \sigma) \) is odd.

So it can't be both (for different expressions as a product of transpositions).

\[\text{Def: An element of } S_n \text{ is even or odd, depending on whether it can be written as a product of an even or odd number of transpositions.} \]

\[\text{Def: For all } n \geq 0, \ An = \{ \sigma \in S_n : \sigma \text{ is even} \}. \]

It is a subgroup of \(S_n \), called the alternating group (on n letters).

If \(n = 0 \) or 1, then \(An = S_n = \{ e \} \), so \(|A_n| = 1 = |S_n| = 1 \).

If \(n > 1 \), then \(|An| = |S_n \setminus An| \), because \(\sigma \mapsto \sigma \circ (1, 2) \) is a bijection from \(An \) to \(S_n \setminus An \) (with inverse \(\varrho \mapsto \varrho \circ (1, 2) \)).

So \(|An| = \frac{|S_n|}{2} = \frac{n!}{2} \) for all \(n \geq 2 \).

\[\text{Example: } S_3 = \{ e, (1), (1, 2, 3), (3, 2, 1), (2, 3), (1, 3), (1, 2) \} \]

\[P_0 \quad P_1 \quad P_2 \quad P_3 \quad \varrho \quad \tau_2 \quad \tau_3 \]

even permutations = \(A_3 \).

\[\text{Challenge: } |A_4| = \frac{4!}{2} = \frac{1 \cdot 2 \cdot 3 \cdot 4}{2} = \frac{24}{2} = 12. \text{ List all } 12 \text{ elements.} \]
Cosets

Def.: Let \(H \) be a subgroup of a group \(G \). A left coset of \(H \) in \(G \) is a subset of \(G \) of the form

\[
 aH = \{ ah : h \in H \}
\]

For some \(a \in G \).

In additive notation: \(a+H = \{ a+h : h \in H \} \).

Example: \(G = \mathbb{Z} \), \(H = 3\mathbb{Z} \)

Then \(1+H = \{ 1+3n : n \in \mathbb{Z} \} = \{ -2, -1, 0, 1, 2, 3, 4, \ldots \} = 4+H \)

Example: The triangles in the Cayley diagram for \(A_4 \) on p.95 are cosets of the subgroup \(H = \langle (1,2,3) \rangle \).

Thm: Let \(H \leq G \). Then the collection of all left cosets of \(H \) in \(G \) is a partition of \(G \).

Proof #1: Define an equivalence relation (see the book).

Proof #2: Show it directly.

The union of all cosets of \(H \) is \(G \) because \(H \subseteq G \), and for all \(a \in G \), \(aH \neq \emptyset \), so \(a \in \text{the union} \). The union of \(H \) is \(G \).

Also all cosets are nonempty, because \(a \in H \) for all \(a \in G \).

Finally, suppose \(aH \cap bH = \emptyset \), so say \(c \notin aH \cap bH \). Then \(c = ah = bh \) with \(h, h' \in H \) and \(a = bh \). Since \(h = h', \) the group gives \(a \in bH \).

Then \(aH \subseteq bH \) because \(a = bh \) with \(h, h' \in H \); \(a \) \ in \(bH \) for all \(h \in H \). Similarly, \(bH \subseteq aH \) is a left coset. Thus, \(aH = bH \).

So two cosets are either equal or disjoint. It's a partition.

You can do all of the above with right cosets instead of left cosets. Right cosets are \(Ha = \{ ha : h \in H \} \) or \(H + a = \{ h+a : h \in H \} \) in additive notation.
Observations: Let $H \leq G$. Then all (left or right) cosets of H in G have the same cardinality.

Proof: For left cosets: fix $a \in G$, and define $\varphi: H \rightarrow aH$ by $\varphi(h) = ah$. Then φ is onto by definition of aH, and is 1-1 by cancellation ($ah = ah' \Rightarrow h = h'$). Let $|aH| = |H| \forall a \in G$.

Similarly, $|Ha| = |H| \forall a \in G$.

Thm (La Grange): Let G be a finite group and let $H \leq G$.

Then $|H|$ divides $|G|$.

Proof: Let $n = |G|$, $m = |H|$, and let r be the number of left cosets of H in G. Then $n = rm$, so $m | n$.

(We've already seen this if G is cyclic.)

Note: In general, if $|G| = n$ and $m | n$ ($m > 0$), then G might not have a subgroup of order m.

Or, it may have more than one subgroup of order m.

Example: $\langle (1, 2) \rangle \neq \langle (2, 3) \rangle$ are subgroups of S_3 of order 2.

Cor: Let G be a finite group and let $a \in G$. Then the order of a divides $|G|$.

Proof: Since $\langle a \rangle$ is a subgroup of G, it's order divides $|G|$.

But $|a| = |\langle a \rangle|$, so $|a|$ divides $|G|$.

Cor 2: Every group of prime order is cyclic, and is abelian.

Proof: Let G be a group of order p, with p prime.

Let $a \in G$ be an element with $a \neq e$. Then $|a|$ divides p and $|a| \neq 1$, so $|a| = p$; \therefore $\langle a \rangle = G$, so G is cyclic.

Cor 3: All groups of order < 6 are abelian.

Proof: Let G be a group with $|G| < 6$. If $|G| = 1$ then G is the trivial group. $(G \text{ cyclic } \iff \langle e \rangle)$, if $|G| = 2, 3, 4, 5$, then it's also cyclic. If $|G| = 4$ then it's either \mathbb{Z}_4 or V.