Friday, Sept. 14

Last time, we ended with...

Cor: The subgroups of \(\mathbb{Z} \) are exactly the subgroups \(n\mathbb{Z}, \, n \in \mathbb{Z} \).

But if \(n < 0 \), then \(n \mathbb{Z} = (-n)\mathbb{Z} \) with \(-n > 0 \), so we may assume \(n > 0 \).

Moreover, these are all different, since for any \(H \leq \mathbb{Z} \),

\[
\begin{align*}
\text{\(n = \{ \)} & \text{the smallest element of } H \cap \mathbb{Z}^+ \text{ (if } H \cap \mathbb{Z}^+ \neq \emptyset) \\
\text{or} & \text{ } 0 \\
\text{(and } n \in N). & \text{ (otherwise)}
\end{align*}
\]

Divisors and Greatest Common Divisors

Def: Let \(a, b \in \mathbb{Z} \). We say that \(a \) divides \(b \), and write \(a \mid b \), if \(aq = b \) for some \(q \in \mathbb{Z} \). (If \(a \mid b \), we also say \(b \) is a multiple of \(a \).)

If \(a \neq 0 \): \(\frac{b}{a} \in \mathbb{Z} \).

Otherwise: \(0 \mid b \iff b = 0 \).

Def: Let \(r \) and \(s \) be integers (possibly \(0 \)).

The subset \(H = \{nr + ms : \, n, m \in \mathbb{Z} \} \) is a subgroup of \(\mathbb{Z} \), so \(H = d\mathbb{Z} \) for some (uniquely defined) \(d \in \mathbb{N} \).

We say that \(d \) is the greatest common divisor (gcd) of \(r \) and \(s \), and write \(d = \gcd(r, s) \).

Both \(r = 1 \cdot r + 0 \cdot s \) and \(s = 0 \cdot r + 1 \cdot s \) lie in \(H \), so \(d \mid r \) and \(d \mid s \). Therefore \(d \) is a common divisor of \(r \) and \(s \).
Useful Fact: Since $d \in H$, we can write $d = nr + ms$ for some $n, m \in \mathbb{Z}$.

\[\text{if } e \text{ is a common divisor of } r \text{ and } s, \]
\[\text{then } e | nr \text{ and } e | ms, \text{ so } e | d. \]
\[\therefore e \leq d \quad (\text{unless } d = 0) \]

Examples:
\[\gcd(24, 10) = 2 \]
\[\gcd(0, 14) = 14 \]
\[\gcd(0, -14) = 14 \]
\[\gcd(0, 0) = 0 \]

Subgroups of Finite Cyclic Groups

Thm: Let G be a finite cyclic group of order n, and let $a \in G$ be a cyclic generator. (So $G = \langle a \rangle$)

Let $b \in G$, write $b = a^s$ for some $s \in \mathbb{Z}$, and let $d = \gcd(s, n)$.

Then $\langle b \rangle = \langle a^d \rangle$, and this cyclic subgroup has order n/d.

Also $\langle a^s \rangle = \langle a^t \rangle \iff \gcd(s, n) = \gcd(t, n)$.

Proof: Since $d = \gcd(s, n)$, we have $d = un + vs$ (with $u, v \in \mathbb{Z}$).

Then $a^d = (a^n)^u \cdot (a^s)^v = a^u \cdot b^v = b^v$, so $a^d \in \langle b \rangle$.

\[\langle a^s \rangle \leq \langle b \rangle \]

Also $d | s$, say $d \cdot w = s$, so $b = a^s = (a^d)^w \in \langle a^d \rangle$.

\[\langle b \rangle \leq \langle a^d \rangle. \]

\[\therefore \langle b \rangle = \langle a^d \rangle. \]

The elements of G are $e, a, a^2, \ldots, a^{n-1}$ (all different).

The elements of $\langle a^d \rangle$ are $e, a^d, a^{2d}, \ldots, (a^d)^{\frac{n}{d}-1}$ (all different).

a^d has order $\frac{n}{d}$ (since $(a^d)^{\frac{n}{d}} = a^n = e$ but no smaller power > 0 is e).
\[|| = |<a^d>| = |a^d| = n/d. \]

For the last sentence:
\[<a^2> = <a^k> \Rightarrow |a^k| = (a^k) \Rightarrow \frac{n}{gcd(s,n)} = \frac{n}{gcd(t,n)} \Rightarrow gcd(s,n) = gcd(t,n) \]
\[gcd(s,n) = gcd(t,n) \Rightarrow <a^2> = <a^{gcd(s,n)}> = <a^{gcd(t,n)}> = <a^k>. \]

Cor. (not in book): Let \(G \) be a finite cyclic group of order \(n \), and let \(m \in \mathbb{Z}^+ \). Then \(G \) has a subgroup of order \(m \) if and only if \(m | n \).

If so, it has exactly one such subgroup equal to \(<a^{n/m}> \) for any cyclic generator \(a \) of \(G \).

Proof: Let \(a \) be a cyclic generator, and let \(H \leq G \).

Then \(H \) is cyclic, so \(H = <a^s> \) for some \(s \in \mathbb{Z} \), and by the previous theorem, \(|H| = \frac{n}{gcd(s,n)} \), which divides \(n \).

\[\therefore G \text{ has a subgroup of order } m \Rightarrow m | n. \]

Conversely, if \(m | n \) then \(G \) has exactly one subgroup \(<a^{n/m}> \) of order \(m \), because \(\frac{n}{gcd(n,m)} = \frac{n}{n/m} = m \), so \(G \) has a subgroup of order \(m \).

Next (3rd) sentence: Suppose \(m | n \) and \(H_1 \leq G \), \(H_2 \leq G \) with \(|H_1| = |H_2| = m \). Then \(H_1 = <a^s> \) and \(H_2 = <a^t> \) for some \(s, t \in \mathbb{Z} \), and \(\frac{n}{gcd(s,1)} = |H_1| = m = |H_2| = \frac{n}{gcd(n,t)} \)

\[\therefore gcd(s,1) = gcd(n,t) \Rightarrow H_1 = <a^s> = <a^t> = H_2. \]

\[\therefore G \text{ has exactly one such subgroup, and it equals } <a^{n/m}> \text{ by this}. \]