Math 113 - Introduction to Abstract Algebra

InstructorPaul Vojta
LecturesTTh 12:30–2, Etcheverry 3107
Class Number22634
Office883 Evans
E-Mailvojta@math.berkeley.edu
Office HoursTTh 10:30–12
Please email me to set up a time to meet if you cannot make any of these times.
PrerequisitesMath 54 or a course with equivalent linear algebra content
Required Text Fraleigh, A First Course in Abstract Algebra, 7th edition, ISBN: 9780201763904
Catalog DescriptionSets and relations. The integers, congruences, and the Fundamental Theorem of Arithmetic. Groups and their factor groups. Commutative rings, ideals, and quotient fields. The theory of polynomials: Euclidean algorithm and unique factorizations. The Fundamental Theorem of Algebra. Fields and field extensions.
Syllabus The course will likely include the following sections of the textbook:
  • 0–11, 13–16, 18–23, 26, 27, 29–31, 45–47, 32, 34.
GradingGrading will be based on:
20%Homework Assigned weeklyHomework is due in class, usually on Thursdays
20%First midterm Tuesday, October 1512:30–2:00 pm
25%Second midterm Tuesday, November 1912:30–2:00 pm
35%Final exam Friday, December 20 8:00–11:00 am
HomeworkAssigned weekly, generally due on Thursdays. Assignments are given below. Solutions will be posted on bCourses.
Comments
  • I tend to follow the book rather closely, but try to give interesting exercises and examples.
  • Note the final exam date given above (exam group 17). Do not enroll in this course if you cannot take the exam at that date and time, whether because of a conflict, too many exams on that day, or any other reason. The schedule of final exams is available at https://registrar.berkeley.edu/scheduling/academic-scheduling/final-exam-guide-schedules.

Homework Assignments

General rules on homework assignments are:

Homework assignments are due in class on the days indicated below (handed in on paper). The lowest two homework scores are dropped.

No. Due Section Problems Comments
1 September 5 0 9, 12, 16, 17, 26, 32, 34
1 3, 8, 22, 25, 30, 32, 36
2 September 12 2 3, 6, 10, 22, 33, 36
3 2, 10, 16a, 27, 31, 33
3 September 19 4 2, 6, 24, 30, 36, 37
5 4, 11, 13, 16, 22, 23, 50
6 2, 6, 10, 18, 22, 34, 46
4 September 26 Download:    pdf    dvi

iClickers

We will use iClickers in class. These must be the physical iClickers, not the iClicker app. The latter is not allowed, because use of cell phones during class can be very distracting.

iClickers can be obtained from the bookstore, or you may be able to buy a used one from another student.

The grades from iClicker use will be incorporated into the homework portion of the course grade.

Course Handouts

No.DateTitle Download
1August 29 Equivalence relations and partitions pdf dvi
2September 17 These are some of our favorite groups pdf dvi
3September 17 On xn pdf dvi

Exams (Generally)

Policies for exams are as follows.

The two midterms will be given during the normal class hours (12:30–2 pm), and will be in our normal classroom (Etcheverry 3107).

Generally, about a week before each exam, a sample exam will be distributed in class and posted on bCourses. This will usually be an exam from an earlier Math 113 class that I've taught. Sample exams should be used to get a general idea of the likely length of an exam and the general nature of questions to be asked (e.g., the balance between computational and more theoretical questions). However, one should not (for example) observe that a sample exam contains questions on material from Sections 1.5, 2.1, 2.7, 3.1, 3.4, etc., and expect to see questions from those sections on the actual exam.

Exams are cumulative, so the second midterm may have questions from material prior to the first midterm. Of course, the final exam will cover the whole course, but will have increased emphasis on the material not covered on the midterms.

Here is a link "How to lose marks on math exams" (by a former GSI Andrew Critch).

The Math Department maintains an archive of old exams (usually without answers). Here is the link for Math 113.

And finally, a word about regrades: Grade calculation errors are welcome for discussion or review. Whether this solution should be worth 4 or 5 points is not.


Last updated 19 September 2019