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What is this talk about

For 0 < h < 1, we consider a non-selfadjoint Py, on L*(S")
Phi=hDy+e ™ Dyi==—.

— Spec(Pr) = hZ

What is the spectrum of a small perturbation of Py ?



What is this talk about

For 0 < h < 1, we consider a non-selfadjoint Pj, on L?(S*)

Py :=hDy +e 7,

— Spec(Py) = hZ

Numerical illustration:

— Spec(Pr +6Qu),

- 16Qu|| = 107°



What is this talk about

Model for numerical errors
» Anx + 0Qn [von Neumann-Goldstine '47], [Spielmann-Teng '02,
Edelman-Rao '05, Trefethen-Embree '05]
Random matrix
» Qn +0AnN, § <1, An small rank [Tao-Vu '10, Tao '13]
» An +0Qn, 6 < 1 [Bordenave-Capitaine '16]
> Jn +0Qn, 6 = o(1) [Davies-Hager '08], [Guionnet-Matchett-Wood-Zeitouni
'14]
> Tn +0QnN, 6 = o(1) [Sjostrand-V '14-'16]

Non-selfadjoint spectral problems
» Quantum Resonances,
» Kramers-Fokker-Planck type operators, damped wave equation
» Evolution equations (also in the non-linear case), ...
Non-selfadjoint (Pseudo-)differential operators
> P, + 0Qu, § = o(1) [Hager '06,'08, Sjostrand '08-'14, Bordeaux-Montrieux
'08,'10]
> 7'+ 0Qu, 6 = o(1) [Christiansen-Zworski '10]



Non-selfadjoint operators and Spectral Instability

If P: 2 — 5 is not normal, (P — 2z)™! may be very large even far away from
Spec(P):
(P = 2)~"| > dist(z, Spec(P)) .

Pseudospectral effect: The spectrum can be very unstable under small
perturbations of the operator.

e-pseudospectrum [Trefethen-Embree '05], defined by
Spec, (P) := Spec(P)U {z € C; [|(P — 2)7H > 571} ;
Equivalently:
z € Spec,(P) <= 3Q € Z (), ||Q] <1, z € Spec(P + Q)
(instability of spectrum w.r.t. perturbations)

<= z € Spec(P) or Ju. € Z(P), (P — z)u|| < e||lu:||

(existence of quasimodes)



Example

For 0 < h < 1, we consider P, on L*(S') [Hager '06]

— _1ld oo (gl
Py, :=hDg + g(x), Dx'iidm’ geCT(S;0)

p(m,f):§+g(1’), (175) ET*Sl-

Zone of spectral instability:

¥ = p(T*ST)
Outside X: Spectral stability

— 2€C\Z = ||(Pn—2)"Y = O(1) uniformly as h — 0, as (P, — 2) is
elliptic,

— If 0 < § < h", k>0, then Spec(P, + 0Q) C X+ o(1).
Energy shell: for any z € Q € 3 the energy shell

p () = {pi(2),p ()} cT*S', st: £{Rep,Imp}(ps) <O0.



Quasimodes and Pseudospectrum

Energy shell: for any 2 € Q € 3 the energy shell

p(z) = {pa(2), p-(2)} € T*S', st: +{Rep,Imp}(ps) < 0.

Quasimodes [Davies '99, Dencker-Sjéstrand-Zworski '04]
> V p4(z) : 3 a quasimode e (z; h) microlocalized in py(z) with

)
[(Pr — 2)eq (2 h)[| = O(h™)]les (25 b
» V p_(z) : 3 a quasimode e_(z; h) microlocalized in p_(z) with

[(Pr = 2)"e— (23 h)|| = O(h™)|le4 (25 h)|
= every z € Q is in the h®>°-pseudospectrum of Pj:

i.e. for 6 = h™, M > 1, 3 a bounded operator Q such that z € Spec(P, + §Q).

Question: What does the spectrum of Py, + 6Q look like for a generic
perturbation?



Adding a small random perturbation

Basis: {es,}ren be an ONB of L2
» E.g.: the Fourier modes ey (z) = e*** for L?(S")

» Take N(h) so that {ex}r<n(n) covers a neighbourhood of p~*(£2).

Define the random operators

(RM) Qu= > aie;®er, (RP) Vo= aje;.
(h)

G k<N (h) J<N

where e are complex valued iid random variables satisfying

Eloe] =0, E[al] =0, Elja.’]=1, E[ae|*"™] < .
Bounded perturbation
» (RM) ||Qullzs < Ch™2 with probability > 1 — O(h®).
> (RP) ||Vulleo < CR™2  with probability > 1 — O(h?).



Macroscopic spectral distribution

Theorem (Hager '06, Hager-Sjostrand '08)

Spec(Pp, + 0Q.) satisfies a probabilistic Weyl's law. For ' C Q2 & ¥ a domain
with smooth boundary OT", then, with probability > 1 — A",

#(Spec(PY)NT) = ﬁ (// - dxd€ + o(l)) , ash—0".
p—1

(RM) [Hager '06] for P, = hD, + g(x), with p~'(2) = {p4,p_}.
— [Hager-Sjéstrand '08] for P, = Opx(p) on R%.
(RP) [Hager '06b] P, = Opx(p) on R* with

— [Sjéstrand '08, '09] P, = Opn(p) on R? or compact manifold M.

[Bordeaux-Montrieux '08]



Numerical Experiments



Numerical Experiments
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Spectrum for 3 different operators on S* perturbed by the same 6Q.,.

What is the difference ?



Numerical Experiments
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random matrix 6Q. vs random potential 6V,

For the same operator Ps = (hD,)? + e 3 on S* we compare different types of
random perturbations.
What is the difference ?



Q. vs V,
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random matrix 0Q,, VS random potential 6V,

Differences in the fine structure of eigenvalues — spectral correlations

— 0Q.: eigenvalues show repulsion on the scale of the mean level spacing

— V., eigenvalues can be clustered



Point process of eigenvalues — Microscale

Local Statistics )
Weyl law = average spacing of the eigenvalues of PY at zp € ¥ is
dh(20)1/2 = h71/2.

5 - RESCALE 5
Z;, = Z [N — Zp, = Z 6(Afzo)\/m

Ao (P}) e (P])




Point process of eigenvalues — Microscale

Local Statistics i
Weyl law = average spacing of the eigenvalues of P at zp € ¥ is
dh(20)1/2 = h_l/Q.

25 i RESCALE 55
Zh = Z O — Zn= Z 5(>\*Zo)\/dh(20)

Ao (B)) xea ()

Correlation functions
The k-point density of Z9 is defined outside A = {z € C*; z; = z; for i # 5}, to
avoid trivial self-correlations, by:

k-point correlation function:

di(z1,. ..
KF(z1,...,21) = lh(zl—z’“) (21,...,2) € CP\A.



Local Statistics: 2-point correlation function

d2 (2’1 22)
2 _ h )
Ko=) = G et )

For P = hD, + g(z) + 0Qu, with p~'(2) = {p. (2), p_(2)} for each z € O
[Hager '06] — universal limiting behaviour (scaling limit):

Theorem (V '14)
For any zp € Q and any w; # w2 € C, we have

Ki (20 + dn(20) " ?w1, z0 + di(20) " *w2) — K* (w1, w2) = “(g|w1 —ws*),

as h — 0, with
(sinh® ¢ 4 t?) cosh t — 2t sinht

sinh® ¢

K(t) =

— the scaling limit is independent of zo and a function of the distance;
— quadratic repulsion at short distances : x(t) = t(1 + O(t?)), t = 0;
— decorrelation at long distances : x(t) = 1 + O(t?e™ %), t — +oo.



Scaling limit is not Ginibre

LHS Red line: r + x(r?), with
72 ™ 2
K (w1, ws2) = /9(§|w1 — w2 )
Blue circles: Numerically obtained histogram data of K7, h = 1073,
averaged over 200 realisations of Gaussian random matrices.

RHS K2 differs from the 2-point function of the Ginibre ensemble (Q., alone, in
the Gaussian case) :

72 _ —7|wy —wa 2
KGinibTe(wlva) =1-—e .



The Gaussian analytic function

Random analytic function (RAF)
g : Proba space — H(O)
Gaussian analytic function (GAF)
(9(21),...9(zn)) ~ Ne(0,%), forall z1,...,2, €O,n €N
i = Elg(21)g(2))] = C(2i,%)),

where C is called the covariance kernel — distribution of g.

Example: o, ~ Ng(0,1) 4id

n/2 n

Zan , C(z,w) =e™", écar = Z Ox

n>0 ' A€g—1(0)

» GAF = covariance kernel determines all k-point correlation functions of
¢aar (Kac-Rice formula)!

» K2 of Hager's model = K2 4,



GAF and Universality

» [Hannay '95] studied the statistics of random spin states — K24 as a
scaling limit of the 2-point correlation function.

> [Bleher-Shiffman-Zelditch '00] zeros of random holomorphic sections of L%,
where L is a positive Hermitian line bundle over a compact Kahler manifold
M, in the limit N — oo.

— for dimg M = 1, they obtain K& ,4(z) as the scaling limit k-point
correlation function.

Theorem (Nonnenmacher-V '16)
Assume that p~'(2) = {p(2)+, p(z)_} for any z € Q € . Then,

z 4 égar, h—0.

Moreover, for any k > 1 and any zo € ¥ the k-point correlation function of é;i
satisfies the scaling limit

Yw e C\A:  Kf(w) — K&ap(w), as h — 0,

where K& 4 is the k-point correlation function of £gar.



Sketch of the Proof



From Eigenvalues to Zeros of a RAF

z-(anti)-holomorphic quasimodes (WKB)

Ei(@,2h) = xa (@)eh e @2 g, || = eh PN
1

ex =cre T = ||(Ph — 2)eq |, [|(Pn — 2)"e—|| = O(h™)
WFp(ex) = {p+}

Grushin problem for P — 2

— Set
Riu = (ulet), u€ H'(S"), R u_=u_e_, u_eC.
Then
P,—z R_\ 1,01 2, a1 . . E(z) Ey(2) ).
( R, 0 ) : H (S")xC — L7(S")xC is of inverse (E_(z) Boi(z)

— Schur's complement formula = z € o0(P,) < E_4(2)=0
— e4 are h®-quasimodes for P, = E_1(z) = O(h*™)

Use same Grushin Problem for P — z to obtain:

B’ (2) = By (2) — 6(Ques ()]~ (2)) + O(0*K*/),

By Shur's formula: study the zeros of E° , (2).



Zeros of a RAF

E? | only smooth in z, but can be made holomorphic as it satisfies a d-equation:

O:E° (2) + 0= (2) E° . (2) = 0.
We are then left to study the zeros of the RAF

F%(2) = (Quéy (20 + h*?2)|€_ (20 + h*/?2)) + small

=z

1) Q., can couple ¢_(z) to €4 (z)

g
2) gn(2) = (Que+ (3)[e-(2)) - GAF, h =0
o ® W 3) For any £ > 0 we have P[|small| > €] — 0, as
¢(2) h — 0.
5 o =  F(2) 3 GAF
0 \\‘.eLW) 1 4) [Shirai '12] observed that this implies that
®c(z) "
Eps(z) = §aar, h—0, &= >, &
Aef=1(0)



Covariance and CLT

g(2) = (Quer(AE-(2) = 3 aEr@)len)(es]e-(2)) < GAF, h—o.
i,j<N(h)

Covariance
E[gn(2)gn(w)] = (€4 (2)[e4 (w)) (e~ (w)[e-(2)) + O(h™)
€4 (2) microlocalized in a v/h-neighbourhood of p(z), thus
(@x (20 + h'/22)|Ex (20 + h'/2w)) = 7% (F0)TTHOWR)

where o4 + 0_ = d(z0)/2 = rescaling z, w by \/d(z0)/(2m) and performing
the limit h — 07, yields the covariance kernel

E[(Quet(2)[e-(2))(Quet (w)le- (w))] — Clz,@) =™, h—0.

Central Limit Theorem under the Lyapunov condition we need to check that as

h—0
> @@l (esle- @) — 0.
4,5 <N(h)



More general 1-D Pseudos



Operators with J quasimodes

The operators we consider: P, be the Weyl quantization of p € S(R?;m)

(Pr(a) = 5 [ [ eFp (T3 2.6) utyaude.

» Q€3 and o(Py) NQ purely discrete
The energy shell: for every z € Q
p otz = {pl(2):) = 1. J} with £ {Rep, Imp}(p’(2)) < 0.
= (P, — 2), (Py — 2)" have J quasimodes ¢/, (2; h) microlocalized in p, (2).
Grushin Problem for Py:

P,—z R_\ 2, a1 . . E(z) Ei(2)
( R, 0 ) : H(m) x €7 — L*(8") x €7 is of inverse <E,(z) E,++(z))

with
(Riw)g = (ulet), w € H(m), R-u— Zu’ie’i, u_ e ¢’.
k



Operators with J quasimodes - Random Matrix

zeo(P) < det E° | (2) = (—6)” det[(Que’, (2)|e (2))i;] + small = 0.

g
d2)e . ei(z) 1) Rescale: % = zg + h'/%z
\ \ O 2) (Quel(2)|€) (2)) B GAFy;, h — 0 with
X covariance ("L FTLFT by
e
dz) ® d2) 3) GAF;; are independent

4) S0, (00(2) + o7 (2)) L(d2) = pa (d€ A d).

Theorem (Nonnenmacher-V '16)
For any zp € by

> Snsnirz == > Ox, F(2) = det(GAF; ;(2))1<i <
A€Spec(P+6Qu) AEF—1(0)

Question: What is the statistics of the zeros of det(GAF;;)?



Operators with J quasimodes - Random Matrix
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Blue circles: numerically obtained histogram data of the rescaled 2-point
correlation function of the operators (h = 1073, § = 107'%)

Py = (hD.)* + e /T L 50, J=2,6,10 (# of quasimodes)

Red line: for comparison, the scaling limit 2-point correlation function of the
Ginibre ensemble (as a function of the distance).

Conjecture
For J > 1, two eigenvalues repel each other quadratically (at the scale of v/h).



Operators with J quasimodes - Random Potential

» Now: perturbation by (RP) 6V.,, with Vi.(z) =32, _ ¢/, aner().

» Symmetric symbol p(z,§) = p(z, —§)
= pl(2) = (a’,£&’), with 2* # 27 for i # j.

Effective Hamiltonian: det E° , (z) = (—08)”7 det[(V..€’ (2)|e’ (2))i;] + small

1) The effect of V, is local:

i dos - Reh@EL @) = [V (e (),
. ei(z) — V., can couple e’ and ei — z' =2’
| 2) (b (2)Ie(2) = O(h) for i # j
0 1 3) Rescale: Z =z + h'/?2
1 o d2) 4) (Ve (2)|eL(2)) < GAF;, with covariance
iy 9 and 257, 04(2) L(dz) = p.(dé A da)

Moreover, the GAF; are independent !

J
— (=6vh) T det E° , (2) LN HGAFi(z), as h — 0.

i=1



Operators with J quasimodes - Random Potential

Theorem (Nonnenmacher-V '16)
For any zp € by

Z 6()\720)h’1/2 i> Z 6)\7 h—0

AeSpec(P+68V,,) xeUJ_, GAF; 1 (0)

= Around zo the local rescaled limiting point process of eigenvalues of P is
given by the superposition of .J independent GAF-processes with covariance
kernel e27:4%,

= The global k-point densities can be obtained from the k-point density of each
of these J GAF-processes.

Absence of close range repulsion: For |z — 22| < 1

K2 (z1,22) = 1— 3 J =) 2 |:1_Oi(ZO)Z1—Z2|2(1 0 |21—Z2|22:|
]Z(z] L (20)) ! woll )

Long range decorrelation: For |z1 — z2| > 1

—rn_inoj V21 —22]2/2
K*(z1,22) =140 (e e Fo)ls =2l >




Operators with J quasimodes - Random Potential

Blue circles: numerically obtained histogram data of the rescaled 2-point
correlation function of the operators (h = 1073, § = 107'%)

P8 = (hD.)? +e /D" L5V, J=2,4,6 (# of quasimodes)

— Absence of quadratic repulsion at the origin! The presence of J independent
processes allows for clusters of size < J eigenvalues.




Conclusions and Perspectives

1) Macroscopic distribution is given by a Weyl law (with good probability).

2) Microscopic distribution is universal but depends on the structure of the
energy shell and type of random perturbation.

» Case of J quasimodes and perturbation by a random matrix 7
> Eigenvalue correlations for P;f close to the pseudospectral boundary;

3) NSA operators in dimension d > 1 : the energy shell is a codimension 2
submanifold => number of quasimodes is ~ h!~¢ = E% | is a large
"random matrix".

4) Weaker non-selfadjointness
> In our case: the non-normality comes from the principal symbol p.
> In the case of the damped wave equation (Sjéstrand '00, Anantharaman '10) the
principal symbol is real-valued and the non-normality comes from the
subprincipal symbol.
> The effects of random perturbations in this case are as of yet unknown.



Merci de votre attention



