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We discuss the work [Bol89], primarily following the presentation of [Com17, Chapter 3].

1 Directed polymer model

Let m = (7(t))sez., be the simple symmetric random walk on Z? started at 0:

t
= Z X, X, R Uniform({=*ey, ..., xeq})

We denote by Prw the law of 7. This is a probability measure on the set II of all possible
trajectories for m. By the central limit theorem, if 7 ~ Prw, then 7(n) converges in the
diffusive scaling limit to a vector of i.i.d. Gaussians:

lim Pry (ﬁ\;ﬁ) € A) = Prob(N(0,d"'1I) € A), ACR
n—o00 n

Let w = (w(t, w))(t 2)eZogxzd D€ B family of i.i.d. Rademacher random variables: P(w(t,z) =

1) = P(w(t,z) = —1) = 1/2. We denote by E the expectation with respect to P. The family
w is called the environment. For § € [0,1] and n € Z>(, we define the Hamiltonian (or
energy) of a trajectory m € Il by

ﬁ (14 Bw(t, n(t))).

The polymer measure is the (random) probability measure % on II with Radon-Nikodym
derivative

dpy, . H(7)

) ,
d Prw (H®)

where the angle brackets denote expectation with respect to Prw:

(H?) ::/HH;;’(W)dPRW(W).
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Ezample 1.1. If =0 then HY(7w) = 1 for any w,n, , and therefore p) = Pry.

It is of great physical importance to understand how and whether the presence of disorder
(i.e. f > 0) affects the geometry and statistics of the simple random walk.

2 Gaussian fluctuations in dimension d > 3

Theorem 2.1 ([Bol89]). There exists By > 0 such that if B € (0, 5y) and d > 3, then

Tim g7 (i\/%) € A) = P(N(0,d"'I) € A)  for P-a.e. w.

Corollary 2.2 ([IS88; Bol89]). There exists Sy > 0 such that if 5 € (0, 5y) and d > 3, then

n—oo

Euo [[7(n)]?] = <H“’ {Ir(n)PHZ (1)) =1 for P-a.e. w.

We will deduce Theorem 2.1 from the following convergence of moments:

Theorem 2.3 ([Bol89]). There exists By > 0 such that if B € (0,5y) and d > 3, then for all
multiindices o € 2%,

im ! : mi(n) )™ “(m) ) = 1) or P-a.e. w
J%M<Hﬁ><g<ﬁ) HY( )> E[N(0,d7'1)*]  for P-a.e. w,

where we adopt the usual multiindex notation x® = H?Zl xt

3 Proof

3.1 Convergence of the partition function
Let 7, := 0 ({w(t,z) : t < n, z € Z%}).

Lemma 3.1. The process n +— (H}?) is a nonnegative (F, )nez.,-martingale with E (H?) = 1.

Proof. Using that E[1 + fw(t,z)] = 1, we get

1 n
E[(H) | Foi] = (2d)" Z E H L+ Bw(t, z1)) | Fur
R

_ (2cli)" 3 1:[(1 + Bu(t,z,))

0=z0,21,...,Tn, t=1
|z—xi—1]=1

=D | ()

0=z0,21,...,Tn—1, t=1
|xt—xi—1]=1




]

Lemma 3.2. The limit Z := lim,,_,o (HY) exists P-a.s. and satisfies EZ = 1 and P(Z >
0)=1.

Proof. The a.s. convergence of (HY) is a direct application of the martingale convergence
theorem, which says that non-negative martingales converge a.s. To upgrade this to conver-
gence in L', we analyze the second moment of (H?). Let 7,7’ be two independent simple
random walks. Then we have

E (Hy)"

(Hy(m)) (H (7))
(Hy (m)H (7))

E
E
<EH<1 + Bult, 7 (1)) (1 +6w<m'<t>>>>

t=1
(4 ey,

where L, (m, ') is the intersection local time

Ly, @) =#{1 <t <n:7(t)=7(t)}.

We have that L, (m,7') < L(m,7') := #{t > 1 : w(t) = 7'(t)}. Observe that L(m,n’) is equal
in distribution to the number of times the (non-simple) random walk 7 := m — 7’ returns to
0. Since d > 3, after each time hitting O there is a constant probability p > 0 that 7™ never
returns to 0 again. ! This implies an exponential tail Prw[L(m,7') > k] = (1 — p)*, and in
particular for all sufficiently small 5 > 0 we have

(04 8274 < oo

In particular, sup, E (H*)* < co. It follows that (H*) — Z in L?, hence in L'. 2 So EZ = 1.
This implies that P(Z > 0) > 0. It can be shown that {Z > 0} is a tail event, so it follows
from Kolmogorov’s zero-one law that P(Z > 0) = 1. [

3.2 A martingale construction for convergence of moments

Recall that we want to show, for any fixed multi-index a € Z‘éo, that

Jim <(%)) 1)) = s | (%)ae_'m du Fras

!That p is constant follows from the strong Markov property, so in particular we have the identity
EL(m,7") = > ;oo Paw(L(m,7') > k) = > ;5,(1 — p)¥. On the other hand, by CLT, 7(n) is (approxi-
mately) uniformlgz distributed in a box of volume O(n%?). So we get EL(m, ) = Y ons1 Prw(m(n) = 0) =
(C) (Zn>1 n_d/2>7 which converges for d > 3. It follows that p > 0.

“Let M be a martingale with sup,E[M2] < oo. One can show that E[(M, —M,)?] =
Shn E[(Mysr — My)?] for any n > m. Setting m = 0 and using that sup, E[M2] < oo leads to
> reo B [(Myg1 — Mi)?] < co. We conclude that M, is Cauchy—hence convergent—in L?.
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We have taken care of the factor 1/ (H¥) So it remains to understand the other factor. To
this end, we note the following general fact:

Lemma 3.3. Let ¢ : Z>o X Z¢ — R be a function such that p(n,n(n)) is a martingale with
respect to the filtration generated by w, i.e.

(p(n,m(n)) | n(t) :t<n—1)=¢pn—1,7(n—1)).
Then (@(n,m(n))HY (7)) is an (Fp)nezs,-martingale.
Proof.

E[(p(n, w(n)) Hy (7)) | Foa] =

Unfortunately, plugging in (n, 7(n)) to the function ¢ : (¢,z) — (z/ ﬂ)a does not produce
a martingale, and we need to add a correction. We derive this correction as follows.

Recall that the a-th moment can be accessed by differentiating the moment-generating func-

tion:
(A x)=(0,m(n)) >

where we write 05 := Hle % This leads us to define ¢ : Z x Z% — R by

(Hy () w(n)®) = 0% (Hy: () X))

- <Hs<w> e

A=0

Pl @) i= 05 1o

)
A=0

where g is the log-moment-generating function of the increments X ~ Uniform({=£es, ..., teq}):
AX e e d
A) =1 )y =1 ], A e R%
o) =g () =g (3
The role of the factor e =™ is explained by the following

Lemma 3.4. p(n,m(n)) is a martingale with respect to the filtration generated by .
Proof. Since (Xm0 =1, we get that

<6>\~7r(n)fng(>\) | 7T(t) t<n— 1> — M=) =(n=1)o(X)



Using this, we obtain
(p(n,m(n)) | m(t) :t<n—1) =05 <6A'”(”)_”Q(’\) |7(t):t<n—1)

A=0
=¢(n—1,m(n—1)).

Lemma 3.3 now implies the following
Corollary 3.5. (p(n,7(n))H (7)) is an (Fp)nez.,-martingale.

This is promising, but still not enough. So we analyze (¢, x) more carefully. Notice that we
have the decomposition

p(t,x) =2 + ot x) =2+ > A(j,y)Ha,
i21,veL,,
Iy I+2i<[ol

for some coefficients A(7,7). Here, for a multiindex v we write |y| := 71+ - -+74. Also, notice
the moment-generating function of X approximates that of a Gaussian G ~ N(0,d'1):

<)\X>_1_+_‘ | O(l)‘| |)\| /2d __ <6)\G> as)\—>0,
where we abuse notation by writing (-) for the expectation in G. It follows that the function

A2
= 8/‘\“6)"3“"”‘/ 2d
A=0

w(t, .CC) = ai‘e)\'x—tlog<e,\.c>

A=0

admits a similar decomposition:

Ut x) = 2%+ ot ) =2+ Y Ay
i>1, vezd,
[v]+25=|c

Notice in particular that ¢ and ¢ have the same coefficients A(j, ) for |y| + 2j = |a|. Now

we write
(m) = 02 (n, 7(n))

NG
— (1, W(n)/\/ﬁ)
+ n7 12 [y (n, 7(n)) = @o(n, 7(n))]

and take expectations:

v <(%)H <7T>> = "U'{'; (om, () HE ()

- }}w> (o(1,m(m)/v/n) HE)
n-lel/2
+ gy (ol w(m) = o w(m))] B ()
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We analyze the above terms via induction on |a|.

When o = 0 then ¢ = 9 = 1, so the first term is 1 and the second and third terms are 0.
So the above expression is equal to the 0-th moment of a Gaussian.

Suppose we have proven the convergence for all multiindices || < k, and let || = k + 1.
One can argue along the lines of Lemma 3.2 to show that n=1%/2 (o(n, 7(n))H* (7)) — 0 a.s.
(for details, see [Bol89, Lemma 4]). Since we have shown already that (HY) — Z > 0, we
conclude that the first term converges to 0 a.s.

Using the preceding argument and the induction hypothesis, we can further conclude that
the third term converges to 0. Indeed, the matching of the coefficients A(j,~y) implies that
the difference 1y(t, z) — @o(t, x) has degree at most |a| — 3.

Finally, we can repeat all of the preceding analysis with the increments X; replaced by i.i.d.
Gaussians G, to show by induction that the second term above converges to (G*). More
precisely, we can use the fact that

<w(1’ G)> — ag <€)\-G710gEe>\<G> _ 0’ Vo 7£ 0

A=0

to deduce the identity (1o(1, G)) = (G*), and then separately apply the induction hypothesis
to establish the convergence

@ (o1, w(n) V) HE (x)) 22 ((1. G))
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