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We discuss the work [Bol89], primarily following the presentation of [Com17, Chapter 3].

1 Directed polymer model

Let π = (π(t))t∈Z≥0
be the simple symmetric random walk on Zd started at 0:

π(t) =
t∑

s=1

Xs, Xs
i.i.d.∼ Uniform({±e1, . . . ,±ed})

We denote by PRW the law of π. This is a probability measure on the set Π of all possible
trajectories for π. By the central limit theorem, if π ∼ PRW, then π(n) converges in the
diffusive scaling limit to a vector of i.i.d. Gaussians:

lim
n→∞

PRW

(
π(n)√
n

∈ A

)
= Prob

(
N(0, d−1I) ∈ A

)
, A ⊂ Rd.

Let ω =
(
ω(t, x)

)
(t,x)∈Z≥0×Zd be a family of i.i.d. Rademacher random variables: P(ω(t, x) =

1) = P(ω(t, x) = −1) = 1/2. We denote by E the expectation with respect to P. The family
ω is called the environment. For β ∈ [0, 1] and n ∈ Z≥0, we define the Hamiltonian (or
energy) of a trajectory π ∈ Π by

Hω
n (π) :=

n∏
t=1

(1 + βω(t, π(t))).

The polymer measure is the (random) probability measure µω
n on Π with Radon–Nikodym

derivative
dµω

n

dPRW

(π) :=
Hω

n (π)

⟨Hω
n ⟩

,

where the angle brackets denote expectation with respect to PRW:

⟨Hω
n ⟩ :=

∫
Π

Hω
n (π) dPRW(π).
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Example 1.1. If β = 0 then Hω
n (π) = 1 for any ω, n, π, and therefore µω

n = PRW.

It is of great physical importance to understand how and whether the presence of disorder
(i.e. β > 0) affects the geometry and statistics of the simple random walk.

2 Gaussian fluctuations in dimension d ≥ 3

Theorem 2.1 ([Bol89]). There exists β0 > 0 such that if β ∈ (0, β0) and d ≥ 3, then

lim
n→∞

µω
n

(
π(n)√
n

∈ A

)
= P

(
N(0, d−1I) ∈ A

)
for P-a.e. ω.

Corollary 2.2 ([IS88; Bol89]). There exists β0 > 0 such that if β ∈ (0, β0) and d ≥ 3, then

Eµω
n

[
|π(n)|2

]
=

1

⟨Hω
n ⟩
〈
|π(n)|2Hω

n (π)
〉 n→∞−−−→ 1 for P-a.e. ω.

We will deduce Theorem 2.1 from the following convergence of moments:

Theorem 2.3 ([Bol89]). There exists β0 > 0 such that if β ∈ (0, β0) and d ≥ 3, then for all
multiindices α ∈ Zd

≥0,

lim
n→∞

1

⟨Hω
n ⟩

〈
d∏

i=1

(
πi(n)√
n

)αi

Hω
n (π)

〉
= E

[
N(0, d−1I)α

]
for P-a.e. ω,

where we adopt the usual multiindex notation xα :=
∏d

i=1 x
αi
i .

3 Proof

3.1 Convergence of the partition function

Let Fn := σ
(
{ω(t, x) : t ≤ n, x ∈ Zd}

)
.

Lemma 3.1. The process n 7→ ⟨Hω
n ⟩ is a nonnegative (Fn)n∈Z≥0

-martingale with E ⟨Hω
n ⟩ = 1.

Proof. Using that E [1 + βω(t, x)] = 1, we get

E [⟨Hω
n ⟩ | Fn−1] =

1

(2d)n

∑
0=x0,x1...,xn,
|xt−xt−1|=1

E

[
n∏

t=1

(1 + βω(t, xt)) | Fn−1

]

=
1

(2d)n

∑
0=x0,x1,...,xn,
|xt−xt−1|=1

n−1∏
t=1

(1 + βω(t, xt))

=
1

(2d)n−1

∑
0=x0,x1,...,xn−1,

|xt−xt−1|=1

n−1∏
t=1

(1 + βω(t, xt))

=
〈
Hω

n−1

〉
.
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Lemma 3.2. The limit Z := limn→∞ ⟨Hω
n ⟩ exists P-a.s. and satisfies EZ = 1 and P(Z >

0) = 1.

Proof. The a.s. convergence of ⟨Hω
n ⟩ is a direct application of the martingale convergence

theorem, which says that non-negative martingales converge a.s. To upgrade this to conver-
gence in L1, we analyze the second moment of ⟨Hω

n ⟩. Let π, π′ be two independent simple
random walks. Then we have

E ⟨Hω
n ⟩

2 = E ⟨Hω
n (π)⟩ ⟨Hω

n (π
′)⟩

= E ⟨Hω
n (π)H

ω
n (π

′)⟩

=

〈
E

n∏
t=1

(1 + βω(t, π(t)))(1 + βω(t, π′(t)))

〉
=
〈
(1 + β2)Ln(π,π′)

〉
,

where Ln(π, π
′) is the intersection local time

Ln(π, π
′) := #{1 ≤ t ≤ n : π(t) = π′(t)}.

We have that Ln(π, π
′) ≤ L(π, π′) := #{t ≥ 1 : π(t) = π′(t)}. Observe that L(π, π′) is equal

in distribution to the number of times the (non-simple) random walk π̃ := π − π′ returns to
0. Since d ≥ 3, after each time hitting 0 there is a constant probability p > 0 that π̃ never
returns to 0 again. 1 This implies an exponential tail PRW[L(π, π′) > k] = (1 − p)k, and in
particular for all sufficiently small β > 0 we have〈

(1 + β2)L(π,π
′)
〉
<∞.

In particular, supn E ⟨Hω
n ⟩

2 <∞. It follows that ⟨Hω
n ⟩ → Z in L2, hence in L1. 2 So EZ = 1.

This implies that P(Z > 0) > 0. It can be shown that {Z > 0} is a tail event, so it follows
from Kolmogorov’s zero-one law that P(Z > 0) = 1.

3.2 A martingale construction for convergence of moments

Recall that we want to show, for any fixed multi-index α ∈ Zd
≥0, that

lim
n→∞

1

⟨Hω
n ⟩

〈(
π(n)√
n

)α

Hω
n (π)

〉
=

1

(2π)d/2

∫
Rd

(
u√
d

)α

e−|u|2/2 du P-a.s.

1That p is constant follows from the strong Markov property, so in particular we have the identity
EL(π, π′) =

∑
k≥0 PRW(L(π, π′) > k) =

∑
k≥0(1 − p)k. On the other hand, by CLT, π̃(n) is (approxi-

mately) uniformly distributed in a box of volume Θ(nd/2). So we get EL(π, π′) =
∑

n≥1 PRW(π(n) = 0) =

Θ
(∑

n≥1 n
−d/2

)
, which converges for d ≥ 3. It follows that p > 0.

2Let M be a martingale with supn E
[
M2

n

]
< ∞. One can show that E

[
(Mn −Mm)2

]
=∑n−1

k=m E
[
(Mk+1 −Mk)

2
]
for any n ≥ m. Setting m = 0 and using that supn E

[
M2

n

]
< ∞ leads to∑∞

k=0 E
[
(Mk+1 −Mk)

2
]
< ∞. We conclude that Mn is Cauchy—hence convergent—in L2.
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We have taken care of the factor 1/ ⟨Hω
n ⟩ So it remains to understand the other factor. To

this end, we note the following general fact:

Lemma 3.3. Let φ : Z≥0 × Zd → R be a function such that φ(n, π(n)) is a martingale with
respect to the filtration generated by π, i.e.

⟨φ(n, π(n)) | π(t) : t ≤ n− 1⟩ = φ(n− 1, π(n− 1)).

Then ⟨φ(n, π(n))Hω
n (π)⟩ is an (Fn)n∈Z≥0

-martingale.

Proof.

E [⟨φ(n, π(n))Hω
n (π)⟩ | Fn−1] = ⟨E [φ(n, π(n))Hω

n (π) | Fn−1]⟩
=
〈
φ(n, π(n))Hω

n−1(π)E [1 + βω(n, π(n))]
〉

=
〈
φ(n, π(n))Hω

n−1(π)
〉

=
〈
⟨φ(n, π(n)) | π(t) : t ≤ n− 1⟩ Hω

n−1(π)
〉

=
〈
φ(n, π(n))Hω

n−1(π)
〉
.

Unfortunately, plugging in (n, π(n)) to the function φ : (t, x) 7→
(
x/

√
t
)α

does not produce
a martingale, and we need to add a correction. We derive this correction as follows.

Recall that the α-th moment can be accessed by differentiating the moment-generating func-
tion:

⟨Hω
n (π) π(n)

α⟩ = ∂αλ
〈
Hω

n (π) e
λ·π(n)〉 ∣∣∣∣

λ=0

=

〈
Hω

n (π) ∂
α
λ e

λ·x
∣∣∣∣
(λ,x)=(0,π(n))

〉
,

where we write ∂αλ :=
∏d

i=1
∂αi

∂λ
αi
i

. This leads us to define φ : Z× Zd → R by

φ(t, x) := ∂αλ e
λ·x−tϱ(λ)

∣∣∣∣
λ=0

,

where ϱ is the log-moment-generating function of the incrementsX ∼ Uniform({±e1, . . . ,±ed}):

ϱ(λ) := log
〈
eλ·X

〉
= log

(
d∑

i=1

eλi + e−λi

2d

)
, λ ∈ Rd.

The role of the factor e−tϱ(λ) is explained by the following

Lemma 3.4. φ(n, π(n)) is a martingale with respect to the filtration generated by π.

Proof. Since
〈
eλ·Xn−ϱ(λ)

〉
= 1, we get that〈

eλ·π(n)−nϱ(λ) | π(t) : t ≤ n− 1
〉
= eλ·π(n−1)−(n−1)ϱ(λ).
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Using this, we obtain

⟨φ(n, π(n)) | π(t) : t ≤ n− 1⟩ = ∂αλ
〈
eλ·π(n)−nϱ(λ) | π(t) : t ≤ n− 1

〉 ∣∣∣∣
λ=0

= φ(n− 1, π(n− 1)).

Lemma 3.3 now implies the following

Corollary 3.5. ⟨φ(n, π(n))Hω
n (π)⟩ is an (Fn)n∈Z≥0

-martingale.

This is promising, but still not enough. So we analyze φ(t, x) more carefully. Notice that we
have the decomposition

φ(t, x) = xα + φ0(t, x) := xα +
∑

j≥1, γ∈Zd
≥0,

|γ|+2j≤|α|

A(j, γ)tjxγ,

for some coefficients A(j, γ). Here, for a multiindex γ we write |γ| := γ1+· · ·+γd. Also, notice
the moment-generating function of X approximates that of a Gaussian G ∼ N(0, d−1I):〈

eλ·X
〉
= 1 +

|λ|2

2d
+ o(|λ|2) ∼ e|λ|

2/2d =
〈
eλ·G

〉
as λ→ 0,

where we abuse notation by writing ⟨·⟩ for the expectation in G. It follows that the function

ψ(t, x) := ∂αλ e
λ·x−t log⟨eλ·G⟩

∣∣∣∣
λ=0

= ∂αλ e
λ·x−t

|λ|2
2d

∣∣∣∣
λ=0

admits a similar decomposition:

ψ(t, x) = xα + ψ0(t, x) := xα +
∑

j≥1, γ∈Zd
≥0,

|γ|+2j=|α|

A(j, γ)tjxγ.

Notice in particular that φ and ψ have the same coefficients A(j, γ) for |γ|+ 2j = |α|. Now
we write (

π(n)√
n

)α

= n−|α|/2φ(n, π(n))

− ψ0(1, π(n)/
√
n)

+ n−|α|/2 [ψ0(n, π(n))− φ0(n, π(n))]

and take expectations:

1

⟨Hω
n ⟩

〈(
π(n)√
n

)α

Hω
n (π)

〉
=
n−|α|/2

⟨Hω
n ⟩

⟨φ(n, π(n))Hω
n (π)⟩

− 1

⟨Hω
n ⟩
〈
ψ0(1, π(n)/

√
n)Hω

n

〉
+
n−|α|/2

⟨Hω
n ⟩

⟨[ψ0(n, π(n))− φ0(n, π(n))]H
ω
n (π)⟩ .
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We analyze the above terms via induction on |α|.

When α = 0 then φ = ψ = 1, so the first term is 1 and the second and third terms are 0.
So the above expression is equal to the 0-th moment of a Gaussian.

Suppose we have proven the convergence for all multiindices |α| ≤ k, and let |α| = k + 1.
One can argue along the lines of Lemma 3.2 to show that n−|α|/2 ⟨φ(n, π(n))Hω

n (π)⟩ → 0 a.s.
(for details, see [Bol89, Lemma 4]). Since we have shown already that ⟨Hω

n ⟩ → Z > 0, we
conclude that the first term converges to 0 a.s.

Using the preceding argument and the induction hypothesis, we can further conclude that
the third term converges to 0. Indeed, the matching of the coefficients A(j, γ) implies that
the difference ψ0(t, x)− φ0(t, x) has degree at most |α| − 3.

Finally, we can repeat all of the preceding analysis with the increments Xt replaced by i.i.d.
Gaussians Gt to show by induction that the second term above converges to ⟨Gα⟩. More
precisely, we can use the fact that

⟨ψ(1, G)⟩ = ∂αλ

〈
eλ·G−logEeλ·G

〉 ∣∣∣∣
λ=0

= ∂αλ 1

∣∣∣∣
λ=0

= 0, ∀α ̸= 0

to deduce the identity ⟨ψ0(1, G)⟩ = ⟨Gα⟩, and then separately apply the induction hypothesis
to establish the convergence

1

⟨Hω
n ⟩
〈
ψ0(1, π(n)/

√
n)Hω

n (π)
〉 a.s.−−→ ⟨ψ0(1, G)⟩ .
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