Endpoint fluctuations for directed polymers

Victor Ginsburg
UC Berkeley Student Probability Seminar
February 14, 2024

We discuss the work [Bol89], primarily following the presentation of [Com17, Chapter 3].

1 Directed polymer model

Let $\pi=(\pi(t))_{t \in \mathbb{Z}_{\geq 0}}$ be the simple symmetric random walk on \mathbb{Z}^{d} started at 0 :

$$
\pi(t)=\sum_{s=1}^{t} X_{s}, \quad X_{s} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Uniform}\left(\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\}\right)
$$

We denote by P_{RW} the law of π. This is a probability measure on the set Π of all possible trajectories for π. By the central limit theorem, if $\pi \sim P_{\mathrm{RW}}$, then $\pi(n)$ converges in the diffusive scaling limit to a vector of i.i.d. Gaussians:

$$
\lim _{n \rightarrow \infty} P_{\mathrm{RW}}\left(\frac{\pi(n)}{\sqrt{n}} \in A\right)=\operatorname{Prob}\left(\mathrm{N}\left(0, d^{-1} I\right) \in A\right), \quad A \subset \mathbb{R}^{d}
$$

Let $\omega=(\omega(t, x))_{(t, x) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}^{d}}$ be a family of i.i.d. Rademacher random variables: $\mathbb{P}(\omega(t, x)=$ $1)=\mathbb{P}(\omega(t, x)=-1)=1 / 2$. We denote by \mathbb{E} the expectation with respect to \mathbb{P}. The family ω is called the environment. For $\beta \in[0,1]$ and $n \in \mathbb{Z}_{\geq 0}$, we define the Hamiltonian (or energy) of a trajectory $\pi \in \Pi$ by

$$
H_{n}^{\omega}(\pi):=\prod_{t=1}^{n}(1+\beta \omega(t, \pi(t)))
$$

The polymer measure is the (random) probability measure μ_{n}^{ω} on Π with Radon-Nikodym derivative

$$
\frac{d \mu_{n}^{\omega}}{d P_{\mathrm{RW}}}(\pi):=\frac{H_{n}^{\omega}(\pi)}{\left\langle H_{n}^{\omega}\right\rangle}
$$

where the angle brackets denote expectation with respect to P_{RW} :

$$
\left\langle H_{n}^{\omega}\right\rangle:=\int_{\Pi} H_{n}^{\omega}(\pi) d P_{\mathrm{RW}}(\pi)
$$

Example 1.1. If $\beta=0$ then $H_{n}^{\omega}(\pi)=1$ for any ω, n, π, and therefore $\mu_{n}^{\omega}=P_{\mathrm{RW}}$.
It is of great physical importance to understand how and whether the presence of disorder (i.e. $\beta>0$) affects the geometry and statistics of the simple random walk.

2 Gaussian fluctuations in dimension $d \geq 3$

Theorem 2.1 ([Bol89]). There exists $\beta_{0}>0$ such that if $\beta \in\left(0, \beta_{0}\right)$ and $d \geq 3$, then

$$
\lim _{n \rightarrow \infty} \mu_{n}^{\omega}\left(\frac{\pi(n)}{\sqrt{n}} \in A\right)=P\left(\mathrm{~N}\left(0, d^{-1} I\right) \in A\right) \quad \text { for } \mathbb{P} \text {-a.e. } \omega \text {. }
$$

Corollary 2.2 ([IS88; Bol89]). There exists $\beta_{0}>0$ such that if $\beta \in\left(0, \beta_{0}\right)$ and $d \geq 3$, then

$$
\left.\mathbb{E}_{\mu_{n}^{\omega}}\left[|\pi(n)|^{2}\right]=\left.\frac{1}{\left\langle H_{n}^{\omega}\right\rangle}\langle | \pi(n)\right|^{2} H_{n}^{\omega}(\pi)\right\rangle \xrightarrow{n \rightarrow \infty} 1 \quad \text { for } \mathbb{P} \text {-a.e. } \omega \text {. }
$$

We will deduce Theorem 2.1 from the following convergence of moments:
Theorem 2.3 ([Bol89]). There exists $\beta_{0}>0$ such that if $\beta \in\left(0, \beta_{0}\right)$ and $d \geq 3$, then for all multiindices $\alpha \in \mathbb{Z}_{\geq 0}^{d}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\left\langle H_{n}^{\omega}\right\rangle}\left\langle\prod_{i=1}^{d}\left(\frac{\pi_{i}(n)}{\sqrt{n}}\right)^{\alpha_{i}} H_{n}^{\omega}(\pi)\right\rangle=E\left[\mathrm{~N}\left(0, d^{-1} I\right)^{\alpha}\right] \quad \text { for } \mathbb{P} \text {-a.e. } \omega
$$

where we adopt the usual multiindex notation $x^{\alpha}:=\prod_{i=1}^{d} x_{i}^{\alpha_{i}}$.

3 Proof

3.1 Convergence of the partition function

Let $\mathcal{F}_{n}:=\sigma\left(\left\{\omega(t, x): t \leq n, x \in \mathbb{Z}^{d}\right\}\right)$.
Lemma 3.1. The process $n \mapsto\left\langle H_{n}^{\omega}\right\rangle$ is a nonnegative $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z}_{\geq 0}}$-martingale with $\mathbb{E}\left\langle H_{n}^{\omega}\right\rangle=1$.
Proof. Using that $\mathbb{E}[1+\beta \omega(t, x)]=1$, we get

$$
\begin{aligned}
\mathbb{E}\left[\left\langle H_{n}^{\omega}\right\rangle \mid \mathcal{F}_{n-1}\right] & =\frac{1}{(2 d)^{n}} \sum_{\substack{0=x_{0}, x_{1}, \ldots, x_{n},\left|x_{t}-x_{t-1}\right|=1}} \mathbb{E}\left[\prod_{t=1}^{n}\left(1+\beta \omega\left(t, x_{t}\right)\right) \mid \mathcal{F}_{n-1}\right] \\
& =\frac{1}{(2 d)^{n}} \sum_{\substack{0=x_{0}, x_{1}, \ldots, x_{n}, t=1 \\
\left|x_{t}-x_{t-1}\right|=1}} \prod_{t=1}^{n-1}\left(1+\beta \omega\left(t, x_{t}\right)\right) \\
& =\frac{1}{(2 d)^{n-1}} \sum_{\substack{0=x_{0}, x_{1}, \ldots, x_{n} \\
\left|x_{t}-x_{t-1}\right|=1}} \prod_{t=1}^{n-1}\left(1+\beta \omega\left(t, x_{t}\right)\right) \\
& =\left\langle H_{n-1}^{\omega}\right\rangle .
\end{aligned}
$$

Lemma 3.2. The limit $Z:=\lim _{n \rightarrow \infty}\left\langle H_{n}^{\omega}\right\rangle$ exists \mathbb{P}-a.s. and satisfies $\mathbb{E} Z=1$ and $\mathbb{P}(Z>$ $0)=1$.

Proof. The a.s. convergence of $\left\langle H_{n}^{\omega}\right\rangle$ is a direct application of the martingale convergence theorem, which says that non-negative martingales converge a.s. To upgrade this to convergence in L^{1}, we analyze the second moment of $\left\langle H_{n}^{\omega}\right\rangle$. Let π, π^{\prime} be two independent simple random walks. Then we have

$$
\begin{aligned}
\mathbb{E}\left\langle H_{n}^{\omega}\right\rangle^{2} & =\mathbb{E}\left\langle H_{n}^{\omega}(\pi)\right\rangle\left\langle H_{n}^{\omega}\left(\pi^{\prime}\right)\right\rangle \\
& =\mathbb{E}\left\langle H_{n}^{\omega}(\pi) H_{n}^{\omega}\left(\pi^{\prime}\right)\right\rangle \\
& =\left\langle\mathbb{E} \prod_{t=1}^{n}(1+\beta \omega(t, \pi(t)))\left(1+\beta \omega\left(t, \pi^{\prime}(t)\right)\right)\right\rangle \\
& =\left\langle\left(1+\beta^{2}\right)^{L_{n}\left(\pi, \pi^{\prime}\right)}\right\rangle
\end{aligned}
$$

where $L_{n}\left(\pi, \pi^{\prime}\right)$ is the intersection local time

$$
L_{n}\left(\pi, \pi^{\prime}\right):=\#\left\{1 \leq t \leq n: \pi(t)=\pi^{\prime}(t)\right\}
$$

We have that $L_{n}\left(\pi, \pi^{\prime}\right) \leq L\left(\pi, \pi^{\prime}\right):=\#\left\{t \geq 1: \pi(t)=\pi^{\prime}(t)\right\}$. Observe that $L\left(\pi, \pi^{\prime}\right)$ is equal in distribution to the number of times the (non-simple) random walk $\widetilde{\pi}:=\pi-\pi^{\prime}$ returns to 0 . Since $d \geq 3$, after each time hitting 0 there is a constant probability $p>0$ that $\widetilde{\pi}$ never returns to 0 again. ${ }^{1}$ This implies an exponential tail $P_{\mathrm{RW}}\left[L\left(\pi, \pi^{\prime}\right)>k\right]=(1-p)^{k}$, and in particular for all sufficiently small $\beta>0$ we have

$$
\left\langle\left(1+\beta^{2}\right)^{L\left(\pi, \pi^{\prime}\right)}\right\rangle<\infty .
$$

In particular, $\sup _{n} \mathbb{E}\left\langle H_{n}^{\omega}\right\rangle^{2}<\infty$. It follows that $\left\langle H_{n}^{\omega}\right\rangle \rightarrow Z$ in L^{2}, hence in $L^{1} .{ }^{2}$ So $\mathbb{E} Z=1$. This implies that $\mathbb{P}(Z>0)>0$. It can be shown that $\{Z>0\}$ is a tail event, so it follows from Kolmogorov's zero-one law that $\mathbb{P}(Z>0)=1$.

3.2 A martingale construction for convergence of moments

Recall that we want to show, for any fixed multi-index $\alpha \in \mathbb{Z}_{\geq 0}^{d}$, that

$$
\lim _{n \rightarrow \infty} \frac{1}{\left\langle H_{n}^{\omega}\right\rangle}\left\langle\left(\frac{\pi(n)}{\sqrt{n}}\right)^{\alpha} H_{n}^{\omega}(\pi)\right\rangle=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}}\left(\frac{u}{\sqrt{d}}\right)^{\alpha} e^{-|u|^{2} / 2} \mathrm{~d} u \quad \mathbb{P} \text {-a.s. }
$$

[^0]We have taken care of the factor $1 /\left\langle H_{n}^{\omega}\right\rangle$ So it remains to understand the other factor. To this end, we note the following general fact:

Lemma 3.3. Let $\varphi: \mathbb{Z}_{\geq 0} \times \mathbb{Z}^{d} \rightarrow \mathbb{R}$ be a function such that $\varphi(n, \pi(n))$ is a martingale with respect to the filtration generated by π, i.e.

$$
\langle\varphi(n, \pi(n)) \mid \pi(t): t \leq n-1\rangle=\varphi(n-1, \pi(n-1))
$$

Then $\left\langle\varphi(n, \pi(n)) H_{n}^{\omega}(\pi)\right\rangle$ is an $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z}_{\geq 0}}$-martingale.
Proof.

$$
\begin{aligned}
\mathbb{E}\left[\left\langle\varphi(n, \pi(n)) H_{n}^{\omega}(\pi)\right\rangle \mid \mathcal{F}_{n-1}\right] & =\left\langle\mathbb{E}\left[\varphi(n, \pi(n)) H_{n}^{\omega}(\pi) \mid \mathcal{F}_{n-1}\right]\right\rangle \\
& =\left\langle\varphi(n, \pi(n)) H_{n-1}^{\omega}(\pi) \mathbb{E}[1+\beta \omega(n, \pi(n))]\right\rangle \\
& =\left\langle\varphi(n, \pi(n)) H_{n-1}^{\omega}(\pi)\right\rangle \\
& =\left\langle\langle\varphi(n, \pi(n)) \mid \pi(t): t \leq n-1\rangle H_{n-1}^{\omega}(\pi)\right\rangle \\
& =\left\langle\varphi(n, \pi(n)) H_{n-1}^{\omega}(\pi)\right\rangle .
\end{aligned}
$$

Unfortunately, plugging in $(n, \pi(n))$ to the function $\varphi:(t, x) \mapsto(x / \sqrt{t})^{\alpha}$ does not produce a martingale, and we need to add a correction. We derive this correction as follows.

Recall that the α-th moment can be accessed by differentiating the moment-generating function:

$$
\left\langle H_{n}^{\omega}(\pi) \pi(n)^{\alpha}\right\rangle=\left.\partial_{\lambda}^{\alpha}\left\langle H_{n}^{\omega}(\pi) e^{\lambda \cdot \pi(n)}\right\rangle\right|_{\lambda=0}=\left\langle\left. H_{n}^{\omega}(\pi) \partial_{\lambda}^{\alpha} e^{\lambda \cdot x}\right|_{(\lambda, x)=(0, \pi(n))}\right\rangle
$$

where we write $\partial_{\lambda}^{\alpha}:=\prod_{i=1}^{d} \frac{\partial^{\alpha_{i}}}{\partial \lambda_{i}^{\alpha_{i}}}$. This leads us to define $\varphi: \mathbb{Z} \times \mathbb{Z}^{d} \rightarrow \mathbb{R}$ by

$$
\varphi(t, x):=\left.\partial_{\lambda}^{\alpha} e^{\lambda \cdot x-t \varrho(\lambda)}\right|_{\lambda=0}
$$

where ϱ is the log-moment-generating function of the increments $X \sim \operatorname{Uniform}\left(\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\}\right)$:

$$
\varrho(\lambda):=\log \left\langle e^{\lambda \cdot X}\right\rangle=\log \left(\sum_{i=1}^{d} \frac{e^{\lambda_{i}}+e^{-\lambda_{i}}}{2 d}\right), \quad \lambda \in \mathbb{R}^{d}
$$

The role of the factor $e^{-t \varrho(\lambda)}$ is explained by the following
Lemma 3.4. $\varphi(n, \pi(n))$ is a martingale with respect to the filtration generated by π.
Proof. Since $\left\langle e^{\lambda \cdot X_{n}-\varrho(\lambda)}\right\rangle=1$, we get that

$$
\left\langle e^{\lambda \cdot \pi(n)-n \varrho(\lambda)} \mid \pi(t): t \leq n-1\right\rangle=e^{\lambda \cdot \pi(n-1)-(n-1) \varrho(\lambda)} .
$$

Using this, we obtain

$$
\begin{aligned}
\langle\varphi(n, \pi(n)) \mid \pi(t): t \leq n-1\rangle & =\left.\partial_{\lambda}^{\alpha}\left\langle e^{\lambda \cdot \pi(n)-n \varrho(\lambda)} \mid \pi(t): t \leq n-1\right\rangle\right|_{\lambda=0} \\
& =\varphi(n-1, \pi(n-1))
\end{aligned}
$$

Lemma 3.3 now implies the following
Corollary 3.5. $\left\langle\varphi(n, \pi(n)) H_{n}^{\omega}(\pi)\right\rangle$ is an $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z} \geq 0}$-martingale.
This is promising, but still not enough. So we analyze $\varphi(t, x)$ more carefully. Notice that we have the decomposition

$$
\varphi(t, x)=x^{\alpha}+\varphi_{0}(t, x):=x^{\alpha}+\sum_{\substack{j \geq 1, \gamma \in \mathbb{Z}_{\geq 0}^{d},|\gamma|+2 j \leq|\alpha|}} A(j, \gamma) t^{j} x^{\gamma}
$$

for some coefficients $A(j, \gamma)$. Here, for a multiindex γ we write $|\gamma|:=\gamma_{1}+\cdots+\gamma_{d}$. Also, notice the moment-generating function of X approximates that of a Gaussian $G \sim \mathrm{~N}\left(0, d^{-1} I\right)$:

$$
\left\langle e^{\lambda \cdot X}\right\rangle=1+\frac{|\lambda|^{2}}{2 d}+o\left(|\lambda|^{2}\right) \sim e^{|\lambda|^{2} / 2 d}=\left\langle e^{\lambda \cdot G}\right\rangle \quad \text { as } \lambda \rightarrow 0
$$

where we abuse notation by writing $\langle\cdot\rangle$ for the expectation in G. It follows that the function

$$
\left.\psi(t, x):=\partial_{\lambda}^{\alpha} e^{\lambda \cdot x-t \log \left\langle e^{\lambda \cdot G}\right.}\right\rangle\left.\right|_{\lambda=0}=\left.\partial_{\lambda}^{\alpha} e^{\lambda \cdot x-t \frac{|\lambda|^{2}}{2 d}}\right|_{\lambda=0}
$$

admits a similar decomposition:

$$
\psi(t, x)=x^{\alpha}+\psi_{0}(t, x):=x^{\alpha}+\sum_{\substack{j \geq 1, \gamma \in \mathbb{Z}_{\geq 0}^{d},|\gamma|+2 j=|\alpha|}} A(j, \gamma) t^{j} x^{\gamma}
$$

Notice in particular that φ and ψ have the same coefficients $A(j, \gamma)$ for $|\gamma|+2 j=|\alpha|$. Now we write

$$
\begin{aligned}
\left(\frac{\pi(n)}{\sqrt{n}}\right)^{\alpha}=n^{-|\alpha| / 2} & \varphi(n, \pi(n)) \\
& \quad-\psi_{0}(1, \pi(n) / \sqrt{n}) \\
& \quad+n^{-|\alpha| / 2}\left[\psi_{0}(n, \pi(n))-\varphi_{0}(n, \pi(n))\right]
\end{aligned}
$$

and take expectations:

$$
\begin{aligned}
& \frac{1}{\left\langle H_{n}^{\omega}\right\rangle}\left\langle\left(\frac{\pi(n)}{\sqrt{n}}\right)^{\alpha} H_{n}^{\omega}(\pi)\right\rangle=\frac{n^{-|\alpha| / 2}}{\left\langle H_{n}^{\omega}\right\rangle}\left\langle\varphi(n, \pi(n)) H_{n}^{\omega}(\pi)\right\rangle \\
& \quad-\frac{1}{\left\langle H_{n}^{\omega}\right\rangle}\left\langle\psi_{0}(1, \pi(n) / \sqrt{n}) H_{n}^{\omega}\right\rangle \\
& \quad+\frac{n^{-|\alpha| / 2}}{\left\langle H_{n}^{\omega}\right\rangle}\left\langle\left[\psi_{0}(n, \pi(n))-\varphi_{0}(n, \pi(n))\right] H_{n}^{\omega}(\pi)\right\rangle .
\end{aligned}
$$

We analyze the above terms via induction on $|\alpha|$.
When $\alpha=0$ then $\varphi=\psi=1$, so the first term is 1 and the second and third terms are 0 . So the above expression is equal to the 0 -th moment of a Gaussian.

Suppose we have proven the convergence for all multiindices $|\alpha| \leq k$, and let $|\alpha|=k+1$. One can argue along the lines of Lemma 3.2 to show that $n^{-|\alpha| / 2}\left\langle\varphi(n, \pi(n)) H_{n}^{\omega}(\pi)\right\rangle \rightarrow 0$ a.s. (for details, see [Bol89, Lemma 4]). Since we have shown already that $\left\langle H_{n}^{\omega}\right\rangle \rightarrow Z>0$, we conclude that the first term converges to 0 a.s.

Using the preceding argument and the induction hypothesis, we can further conclude that the third term converges to 0 . Indeed, the matching of the coefficients $A(j, \gamma)$ implies that the difference $\psi_{0}(t, x)-\varphi_{0}(t, x)$ has degree at most $|\alpha|-3$.

Finally, we can repeat all of the preceding analysis with the increments X_{t} replaced by i.i.d. Gaussians G_{t} to show by induction that the second term above converges to $\left\langle G^{\alpha}\right\rangle$. More precisely, we can use the fact that

$$
\langle\psi(1, G)\rangle=\left.\partial_{\lambda}^{\alpha}\left\langle e^{\lambda \cdot G-\log \mathbb{E} e^{\lambda \cdot G}}\right\rangle\right|_{\lambda=0}=\left.\partial_{\lambda}^{\alpha} 1\right|_{\lambda=0}=0, \quad \forall \alpha \neq 0
$$

to deduce the identity $\left\langle\psi_{0}(1, G)\right\rangle=\left\langle G^{\alpha}\right\rangle$, and then separately apply the induction hypothesis to establish the convergence

$$
\frac{1}{\left\langle H_{n}^{\omega}\right\rangle}\left\langle\psi_{0}(1, \pi(n) / \sqrt{n}) H_{n}^{\omega}(\pi)\right\rangle \xrightarrow{\text { a.s. }}\left\langle\psi_{0}(1, G)\right\rangle .
$$

References

[Bol89] Erwin Bolthausen. "A note on the diffusion of directed polymers in a random environment". Commun.Math. Phys. 123.4 (Dec. 1989), 529-534. DOI: 10.1007/ BF01218584.
[Com17] Francis Comets. Directed Polymers in Random Environments: École d'Été de Probabilités de Saint-Flour XLVI - 2016. Vol. 2175. Lecture Notes in Mathematics. Springer International Publishing, 2017. ISBN: 978-3-319-50486-5. DOI: 10.1007/978-3-319-50487-2.
[IS88] J. Z. Imbrie and T. Spencer. "Diffusion of directed polymers in a random environment". J Stat Phys 52.3 (Aug. 1, 1988), 609-626. DOI: 10.1007/BF01019720.

[^0]: ${ }^{1}$ That p is constant follows from the strong Markov property, so in particular we have the identity $\mathbb{E} L\left(\pi, \pi^{\prime}\right)=\sum_{k \geq 0} P_{\mathrm{RW}}\left(L\left(\pi, \pi^{\prime}\right)>k\right)=\sum_{k \geq 0}(1-p)^{k}$. On the other hand, by CLT, $\widetilde{\pi}(n)$ is (approximately) uniformly distributed in a box of volume $\Theta\left(n^{d / 2}\right)$. So we get $\mathbb{E} L\left(\pi, \pi^{\prime}\right)=\sum_{n \geq 1} P_{\mathrm{RW}}(\pi(n)=0)=$ $\Theta\left(\sum_{n \geq 1} n^{-d / 2}\right)$, which converges for $d \geq 3$. It follows that $p>0$.
 ${ }^{2}$ Let M be a martingale with $\sup _{n} \mathbb{E}\left[M_{n}^{2}\right]<\infty$. One can show that $\mathbb{E}\left[\left(M_{n}-M_{m}\right)^{2}\right]=$ $\sum_{k=m}^{n-1} \mathbb{E}\left[\left(M_{k+1}-M_{k}\right)^{2}\right]$ for any $n \geq m$. Setting $m=0$ and using that $\sup _{n} \mathbb{E}\left[M_{n}^{2}\right]<\infty$ leads to $\sum_{k=0}^{\infty} \mathbb{E}\left[\left(M_{k+1}-M_{k}\right)^{2}\right]<\infty$. We conclude that M_{n} is Cauchy-hence convergent-in L^{2}.

