
The annular stru
ture of subfa
tors.Vaughan F.R. Jones ∗5th September 20031 Introdu
tion.A �nite index subfa
tor N of a II1 fa
torM is well known to have a "standardinvariant" - two in
reasing sequen
es of �nite dimensional algebras whi
hwere �rst de�ned as the 
ommutants (or 
entralisers) of M and N in thein
reasing tower Mn of extensions of N de�ned indu
tively by M0 = N ,
M1 = M and Mn+1 = End(Mn) where Mn is 
onsidered as a right Mn−1module.The planar algebras de�ned in [?℄ grew out of an attempt to solve themassive systems of linear equations de�ning the standard invariant of a sub-fa
tor de�ned by a "
ommuting square" - see [?℄. The standard invariantarises as the eigenspa
e of largest eigenvalue of the transfer matrix T (withfree horizontal boundary 
onditions) in a 
ertain statisti
al me
hani
al modelwhose Boltzman weights are de�ned by the 
ommuting square. The planaroperad of [?℄ a
ts multilinearly on V so as to 
ommute with T . Hen
e theoperad a
ts on the eigenspa
e of largest eigenvalue whi
h pla
es tight non-linear 
onstraints on that eigenspa
e. It was shown in [?℄ that the ensuinga
tion of the planar operad on the standard invariant 
an be de�ned dire
tlyfrom the data N ⊆ M itself. The appearan
e of Popa's seminal paper [?℄made it 
lear that the planar operad 
ould be used, in the presen
e of re�e
-tion positivity of the partition fun
tion, to axiomatise standard invariants ofsubfa
tors. All this material is explained in detail in [?℄.More signi�
antly than the axiomatisation has been the totally di�erentpoint of view on subfa
tors a�orded by the planar algebra approa
h. Theplanar operad is graded by the number of inputs in a planar tangle. Sothe natural order of in
reasing 
omplexity of operations on the standard
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invariant is by the number of inputs. Tangles with no inputs and one outputare the so-
alled Temperley-Lieb tangles and, in retrospe
t, it was the studyof these tangles that led in [?℄ to the �rst breakthrough on subfa
tors. (It wasKau�man who �rst saw the Temperley-Lieb algebra in a purely diagrammati
way in [?℄.) The natural next step in the order of 
omplexity is to 
onsidertangles with one input and one output. These are the annular tangles and inthis paper we lay the foundations for the study of this the annular stru
tureof subfa
tors.The next step up in 
omplexity will be to 
onsider systemati
ally tangleswith two inputs, whi
h give bilinear operations. This will be mu
h harderthan the study of annular tangles as tangles with up to two inputs generatethe whole operad. In parti
ular one will see the algebra stru
ture on thestandard invariant whi
h has been the main tool of study in the orthodoxapproa
hes of O
neanu([?℄), Popa([?℄) and others. From this perspe
tiveit is truly remarkable that the annular stru
ture yields any information atall about subfa
tors seen from the orthodox point of view. Indeed, besidesthe algebra stru
ture, the notions of prin
ipal graph, fusion and 
onne
tionare entirely absent and even the index itself is just a parameter, with noindi
ation that its size should measure 
omplexity! Yet we will show hereinthat annular 
onsiderations alone are enough to give O
neanu's restri
tionson the prin
ipal graphs in index less than four and even the 
onstru
tion ofthe A − D − E series. Restri
itions will also be obtained in index greaterthan 4 by 
onsidering the generating fun
tion for the dimensions of the gradedpie
es in a planar algebra.The notion that will systematise our study of annular stru
ture is thatof a module over a planar algebra. (In the operadi
 treatment of asso
iativealgebras the notion of "module" over an algebra over an operad a
tuallyde�nes a bimodule over the asso
iative algebra.) Adapting the de�nition of[?℄, a module over a planar algebra will be a graded ve
tor spa
e whoseelements 
an be used as inputs for a single internal dis
 in a planar tangle,the output being another ve
tor in the module, as explained in se
tion 1.By 
ombining all the internal dis
s that 
orrespond to algebra inputs itis natural to think of a module as being a module over an annular 
ategorywhose morphisms are given by annular planar tangles. A planar algebra willalways be a module over itself. More signi�
antly, if a planar algebra P
ontains another Q then P is a module over Q and will be de
omposable assu
h. In parti
ular any planar algebra 
ontains the Temperley Lieb planaralgebra TL and may be de
omposed. In this paper we will exploit thisde
omposition for the �rst time.There are two pre
ursors to this study. The �rst is [?℄ where the TL
ategory was 
ompletely analysed in the 
ase of a parti
ular planar algebra2




alled the tensor planar algebra in [?℄. The se
ond and very impressivepre
ursor is the paper of Graham and Lehrer [?℄ where all TL modules areobtained in a purely algebrai
 setting whi
h in
ludes the non semisimple 
ase.We present two main appli
ations of our te
hnique. The �rst is a positiv-ity result for the Poin
aré series of a planar algebra, obtained by summingthe generating fun
tions of the TL-modules 
ontained in a planar algebra.As a 
orollary one may obtain 
ertain restri
tions on the prin
ipal graph ofa subfa
tor of index 
lose to 4 (see [?℄).The se
ond appli
ation is to give a uniform method for the 
onstru
tionof the ADE series of subfa
tors of index less than 4. We give two versions ofthe proof, the �rst of whi
h interprets the vanishing of a 
ertain determinantas being the �atness of a 
ertain 
onne
tion in the O
neanu language, or the
omputation of the relative 
ommutants for a 
ertain 
ommuting square inthe language of [?℄. This is the �rst 
onvin
ing vindi
ation of the power ofplanar algebras for 
omputing 
ommuting square invariants-whi
h was themotivation 10 years ago for the introdu
tion of planar algebras! To avoid alengthy dis
ussion of 
onne
tions and 
ommuting squares we 
ast this proofentirely in the language of planar algebras though the reader familiar with
ommuting squares will have no trouble re
ognising the origin of the proof.The se
ond proof is a purely planar algebrai
 proof whi
h pro
eeds by givinga system of "skein" relations on a generator of a planar algebra whi
h allowone to 
al
ulate the partition fun
tion of any 
losed tangle. It was shown in[?℄ that the partition fun
tion 
ompletely determines the planar algebra if itis re�e
tion positive. Both the proofs begin by �nding the relevant generatorinside a larger, general planar algebra obtained from the Coxeter graph in[?℄.The results of Graham and Lehrer are 
ru
ial to both the above appli-
aitons sin
e they give the linear independen
e or la
k thereof of 
ertainelements, represented by labelled tangles, in TL-modules. Indeed the resultsare so important that we were 
ompelled to �nd our own proofs of the rel-evant linear independen
e. There are two reasons for this. The �rst is thatGraham and Lehrer never expli
itly address the issues of positivity. Positiv-ity 
annot be dedu
ed from the Graham-Lehrer determinants alone and evenif we had just applied their results we would have had to do a large fra
tionof the work anyway. The se
ond reason is that there are subtle but signif-i
ant di�eren
es in the Graham-Lehrer 
ontext and our own. They had noreason, for instan
e, to worry about shading so their TL-modules are slightlydi�erent from ours. And their handling of sesquilinearity, while exemplaryfrom a purely algebrai
 point of view, requires a little modi�
ation to applyto Hilbert spa
e. Thus in order to have 
on�den
e in our own results wefelt obliged to obtain our own proofs-albeit ones owing a lot to the ideas of3



Graham and Lehrer. But even our own proofs are not quite self-
ontained asthey use spe
ialisations of the parameters to values 
ontained in [?℄ and [?℄.2 Notation.Let P be the planar 
oloured operad de�ned in [?℄. By de�nition a planaralgebra (or general planar algebra, we will not make the distin
tion here) isan algebra over this operad, i.e. a graded ve
tor spa
e P = (P±
0 , Pn, n > 0)together with multilinear maps among the Pk's indexed by the elements of P .The multilinear maps are subje
t to a single 
ompatibility property de�nedin [?℄.De�nition 2.1 An annular tangle T will be a tangle in P with the 
hoi
e of adistinguished internal dis
. The region in the plane between the distinguishedinternal dis
 and the outside boundary dis
 will be 
alled the interior of thetangle. T will be 
alled an annular (m, k)-tangle if it is an m-tangle whosedistinguished internal dis
 has 2k boundary points. In 
ase m or k is zero itis repla
ed with ± as usual.De�nition 2.2 (Left) module over a planar algebra.If P = (P±

0 , Pn, n > 0) is a planar algebra, a module over P , or P −
module will be a graded ve
tor spa
e V = (V ±

0 , Vn, n > 0) with an a
tion of
P . That is to say, given an annular (m, k)-tangle T in P with distinguished("V input") internal dis
 D1 with 2k boundary points and other ("P input")internal dis
s Dp, p = 2, ...n with 2kp boundary points, there is a linear map
ZT : Vk⊗ (⊗n

p=2Pkp) → Vm. ZT satisi�es the same 
ompatibility 
ondition forgluing of tangles as P itself where we note that the output of a tangle with a
V input may be used as input into the distinguished internal dis
 of anothertangle, and elements of P as inputs into the non-distinguished dis
s.Comments. (i) This de�nition of P -module is pre
isely the generalisationto the 
oloured setting of the de�nition of module over an algebra over anoperad found in [?℄.(ii) A planar algebra is always a module over itself. It will be 
onsideredto be the trivial module.(iii) Any relation (linear 
ombination of labelled planar tangles) that holdsin P will hold in V . For instan
e if P is of modulus δ in the sense that a
losed 
ir
le in a tangle 
an be removed by multiplying by δ, the same willbe true for the tangle applied to an input in V . This is a 
onsequen
e of the
ompatibility 
ondition. 4



(iv) The notions of submodule, quotient, irredu
ibility, inde
omposabilityand dire
t sum of P -modules are obvious.There is another way to approa
h P -modules whi
h is more in the monadi
spirit of [?℄. If P is a planar algebra we de�ne the asso
iated annular 
ategory
AnnP to have two obje
ts ± for k = 0, one obje
t for ea
h k > 0, and whosemorphisms are annular labelled tangles in the sense of [?℄ , with labelling setall of P . Given an annular (m, k)-tangle T and an annular (k, n)-tangle S,
TS is the annular (m,n)-tangle obtained by identifying the inside boundaryof T with the outside boundary of S so that the 2k distinguished boundarypoints of ea
h 
oin
ide, as do the distinguished initial regions, then removingthe 
ommon boundary (and smoothing the strings if ne
essary). Let FAPbe the linearization of AnnP - it has the same obje
ts but the set of mor-phisms from obje
t k1 to obje
t k2 is the ve
tor spa
e having as a basis themorphisms in AnnP from k1 to k2. Composition of morphisms in FAP isby linear extension of 
omposition in AnnP . Let D be a 
ontra
tible dis
 inthe interior of an annular (m,n)-tangle T whi
h interse
ts T in an ordinary
k−tangle, k ≥ 0. De�ne a subspa
e R(D) of FAP as follows: on
e T is la-belled outside D it determines a linear map ΦT from the universal presentingalgebra for P to FAP by insertion of labelled tangles. Set R(D) to be thelinear span of all ΦT (ker) where ker is the kernel of the universal presentingmap for P and all labellings of T outside D are 
onsidered.Proposition 2.3 Composition in FAP passes to the quotient by the sub-spa
e spanned by the R(D) as D runs over all dis
s as above.Proof. Composing any tangle with one of the form ΦT (x) for x ∈ kergives another su
h tangle. �De�nition 2.4 The annular algebroid AP = {AP (m,n)} (with m or nbeing ± instead of zero as usual) is the quotient of FAP by R(D) de�ned bythe previous lemma.In other words, AP is the quotient of the universal annular algebroid of
P by all planar relations. Thus for instan
e if P has modulus δ in the sensethat 
losed 
ir
les 
ontribute a multipli
ative fa
tor δ, the same will be truefor 
losed 
ontra
tible 
ir
les in AP .The notions of module over AP and module over P as above are the same.Given a P -module V de�ne an a
tion of FAP on V as follows. Givena labelled annular tangle T , 
onsider the subja
ent unlabelled tangle as inde�nition 2.2. Use the labels of T as P -inputs to obtain a linear map from
V to itself. The 
ompatibility 
ondition for gluing V dis
s shows that V5



be
omes a (left) module over FAP . Note (iii) above shows that this a
tionpasses to AP . Conversely, given a module V over AP , the multilinear mapsrequired by the de�nition of P -module are obtained by labelling the interiordis
s of an annular tangle with elements of P and applying the resultingelement of FAP to a ve
tor in V . One has to 
he
k that these multilinearmaps preserve 
omposition of tangles. If the 
omposition involves an annularboundary dis
, use the fa
t that V is a FAP -module. If the 
ompositioninvolves an interior dis
, the required identity refers only to obje
ts withina 
ontra
tible dis
 in the interior of the annular tangle, so the identity holdssin
e V is an AP module and not just a FAP module. Altogether, thisproves the following:Theorem 2.5 The identity map V → V de�nes an equivalen
e of 
ategoriesbetween P modules in the sense of de�nition 2.2 and left modules over thealgebroid AP .Annular tangles with the same number of boundary points inside and outgive an algebra whi
h will play an important role so we make the following.De�nition 2.6 With AP (m,n) as above, let APm be the algebra AP (m,m)for ea
h positive integer m, and AP± to be the algebras spanned by annulartangles with no boundary points, with the regions near the boundaries shaded(+) or unshaded (-) a

ording to the sign.If we apply this pro
edure to the Temperly-Lieb planar algebra TL(δ) for
δ a s
alar, we obtain the following:For m,n ≥ 0 let AnnTL(m,n) be the set of all annular tangles hav-ing an internal dis
 with 2n boundary points and and an external dis
with 2m boundary points, and no 
ontra
tible 
ir
ular strings. Elementsof AnnTL(m,n) de�ne elements of ATL(m,n) by passing to the quotient of
FATL. The obje
ts of ATL are + and − for m = 0 and sets of 2m pointswhen m > 0. It is easy to 
he
k that morphisms in ATL(δ) between mand n points are linear 
ombinations of elements of AnnTL(m,n), 
omposedin the obvious way. In parti
ular the algebra ATLm(δ) has as a basis theset of annular tangles with no 
ontra
tible 
ir
les, multipli
ation being 
om-position of tangles and removal of 
ontra
tible 
ir
les, ea
h one 
ounting amultipli
ative fa
tor of δ.It will be important to allow non-
ontra
ible 
ir
ular strings-ones thatare not homologi
ally trivial in the annulus. Their most obvious e�e
t atthis stage is to make ea
h algebra ATLm in�nite dimensional. But only just,as the next dis
ussion shows. 6



De�nition 2.7 A through string in an annular tangle will be one whi
h 
on-ne
ts the inside and outside boundaries. AnnTL(m,n)t will denote the setof tangles in AnnTL(m,n) with t through strings.The number of through strings does not in
rease under 
omposition so thelinear span of AnnTL(m,m)r for r ≤ t is an ideal in ATLm. The quotient bythis ideal for t = 0 is �nite dimensional. Its dimension was already 
al
ulatedin [?℄.For future referen
e we de�ne 
ertain elements of AnnTL. Of 
ourse theyare de�ned also as elements of AP for any planar algebra P .De�nition 2.8 Let m ≥ 0 be given. We de�ne elements ǫi, εi, Fi, σ± andthe rotation ρ as follows:(i)For 1 ≤ i ≤ 2m, ǫi is the annular (m−1, m)-tangle with 2m− 2 throughstrings and the ith. internal boundary point 
onne
ted to the(i+1)th. (mod 2m). The �rst internal and external boundary points are 
on-ne
ted whenever possible but when i = 1 or 2m the third internal boundarypoint is 
onne
ted to the �rst external one.When m = 1, for ǫ1 the two internal boundary points are 
onne
ted bya string having the shaded region between it and the internal boundary andfor ǫ2 the string has the shaded region between it and the external boundary.To avoid 
onfusion in this and future 
ases when m = 1 we draw ǫ1 and ǫ2below.(Remember that the boundary region marked * is always unshaded.)
ǫ1 ǫ2(ii)For 1 ≤ i ≤ 2m+2, εi is the annular (m+1, m)-tangle with 2m throughstrings and the ith. external boundary point 
onne
ted to the

(i+ 1)th.(mod2m + 2). The �rst internal and external boundary points are
onne
ted whenever possible but when i = 1 or 2m + 2 the third externalboundary point is 
onne
ted to the �rst internal one.When m = 0, for ε1 the two external boundary points are 
onne
ted by astring having the shaded region between it and the external boundary and for
ε2 the string has the shaded region between it and the internal boundary.(iii) For 1 ≤ i ≤ 2m let Fi be the annular (m,m)-tangle with 2m − 2through strings 
onne
ting the jth. internal boundary point to the jth. exter-nal one ex
ept when j = i and j = i+ 1 (mod 2m).When m = 1 we adopt 
onventions as for ǫ and ε. We depi
t F1 and F2below. 7



(iv)Let ρ be the annular (m,m)-tangle with 2m through strings with the�rst internal boundary point 
onne
ted to the third external one.(v)Let σ± be the annular (±,∓) tangles with opposite inside and outsideshadings near the boundaries and a single homologi
ally non-trivial 
ir
leinside the annulus.Now return to the 
ase of a general planar algebra P . To generalise thenotion of through strings we introdu
e the following.De�nition 2.9 If T is an annular (m,n) tangle (an m-tangle with a dis-tinguished internal dis
 having 2n boundary points), the rank of T is theminimum, over all embedded 
ir
les C inside the annulus whi
h are homo-logi
ally non trivial in the annulus and do not meet the internal dis
s, of thenumber of interse
tion points of C with the strings of TFor instan
e if T has no internal dis
s besides the distinguished one, itde�nes an element of ATL(m,n) and the rank of T is just the number ofthrough strings.Remark. If an annular (m,n) tangle T has rank 2r it may be written asa 
omposition T1T2 where T1 is an (m, r) tangle and T2 is an (r, n) tangle.Lemma 2.10 If P is a planar algebra, the linear span in the algebra APmof all labelled annular (m,m)-tangles of rank ≤ r is a two-sided ideal.We do not expe
t the quotient of APm by the ideal of the previous lemmato be �nite dimensional in general though there are 
ases di�erent from Tem-perley Lieb where it is.We 
on
lude this se
tion with a 
ouple of generalities on P -modules. Theterms irredu
ible and inde
omposable have their obvious meanings.Lemma 2.11 Let V = (Vk) be a P -module. Then V is inde
omposable i�
Vk is an inde
omposable APk module for ea
h k.Proof. Suppose V is inde
omposable but that Vk has a proper APk module
W for some k. Then applying AP to W one obtains a sub P -module X of
V and Xk ⊆ W sin
e returning to Vk from Xm is the same as applying anelement of APk. The 
onverse is obvious. �De�nition 2.12 The weight wt(V ) of a P -module V is the smallest k forwhi
h Vk is non-zero. (If V+ or V− is non-zero we say V has weight zero.)Elements of Vwt(V ) will be 
alled lowest weight ve
tors. The set of all lowestweight ve
tors is an APwt(V )-module whi
h we will 
all the lowest weightmodule. 8



De�nition 2.13 The dimension of a P -module V is the formal power series
ΦV (z) =

1

2
dim(V+ ⊕ V−) +

∞∑

k=1

dim(Vk)z
kObserve that the dimension is additive under the dire
t sum of two P -modules.We will not 
on
ern ourselves here with further purely algebrai
 proper-ties. We are espe
ially interested in subfa
tors, where positivity holds.3 Hilbert P -modules.A C∗-planar algebra P is one for whi
h ea
h Pk is a �nite dimensional C∗-algebra with * 
ompatible with the planar algebra stru
ture as in [?℄. The*-algebra stru
ture on P indu
es ∗-stru
ture on AP as follows. De�ne aninvolution ∗ from annular (m, k)-tangles to (k,m)-tangles by re�e
tion in a
ir
le half way between the inner and outer boundaries. (The initial unshadedregions around all dis
s are the images under the re�e
tion of the initialunshaded regions before re�e
tion, as in the de�nition of a ∗-planar algebrain [?℄.) If P is a C∗-planar algebra this de�nes an antilinear involution ∗ on

FAP by taking the ∗ of the unlabelled tangle subja
ent to a labelled tangle T ,repla
ing the labels of T by their ∗'s and extending by antilinearity. Sin
e Pis a planar ∗-algebra, all the subspa
es R(D) are preserved under ∗ on FAP ,so ∗ passes to an antilinear involution on the algebroid AP . In parti
ular allthe APk are ∗-algebras.De�nition 3.1 Let P be a C∗-planar algebra. A P -module V will be 
alleda Hilbert P -module if ea
h Vk is a �nite dimensional Hilbert spa
e with innerprodu
t 〈, 〉 satisfying
〈av, w〉 = 〈v, a∗w〉for all v, w in V and a in AP (in the graded sense).Comments. (i)A P -submodule of a Hilbert P -module is a Hilbert P -module.(ii)The orthogonal 
omplement (in the graded sense) of a submodule of a

P -submodule is a P -submodule so that inde
omposability and irredu
ibilityare the same for Hilbert P -modules.Re
all from [?℄ that a C∗-planar algebra P is said to be spheri
al if thereare linear fun
tionals Z : P±
0 → C whi
h together de�ne a spheri
ally invari-ant fun
tion on labelled 0-tangles. The partition fun
tion Z is also required9



to be positive de�nite in the sense that 〈x, y〉 = Z(xcy
∗) is a positive de�niteHermitian form on ea
h Pk where xcy denotes the 
omplete 
ontra
tion oftangles x and y, i.e. the labelled 0-tangle illustrated below with 2 internal

k-dis
s and 2k strings 
onne
ting them, with the initial regions of ea
h dis
 inthe same 
onne
ted 
omponent of the plane minus the tangle, with x in onedis
 and y in the other, as shown below. It does not matter how the strings
onne
t the two dis
s, by spheri
al invarian
e. (Z(xcy) would be trace(xy)in the terminology of [?℄.)
xcyA spheri
al C∗-planar algebra always admits a Hilbert P -module, namelyitself, as follows.Proposition 3.2 If P is a spheri
al C∗-planar algebra then the inner prod-u
t 〈x, y〉 = Z(xcy

∗) makes P into a Hilbert P -module.Proof. The a
tion of AP on P is that of 
omposition of tangles. All thatneeds to be shown is the formula
〈av, w〉 = 〈v, a∗w〉for all v, w in P and a in AP . We may assume that v, w, and a are all labelledtangles so the equation is Z((av)cw

∗) = Z(vc(a
∗w)∗). In fa
t the two tangles

(av)cw
∗ and vc(a∗w)∗ are isotopi
 in the two-sphere. Observe as a 
he
k thatthe labels in the dis
s are 
orre
tly starred and unstarred on both sides ofthe equation. Also if we number the boundary regions of the tangles startingwith the distinguished one we see that they are numbered the same on theleft and right of the equation. (Note that taking the * of an annular tanglereverses the order of the regions of an internal dis
 but preserves the order ofthe internal and external boundary dis
s.) Now imagine a 
ylinder with dis
sat either end, one 
ontaining v and one 
ontaining w∗. On the surfa
e of the
ylinder 
onne
t v and w with a. Isotoping the surfa
e of the 
ylinder (minusa point on the boundary between a and w) to the plane we see (av)cw

∗ andtaking the point at in�nity to be on the boundary between v and w we see
vc(a

∗w)∗. By spheri
al invarian
e we are through. �In the operad theory of asso
iative algebras a module over an algebra
A over the relevant operad is equivalent to a bimodule over A. This is thetrivial bimodule. So we will think of the Hilbert P -module P as being thetrivial module. The trivial module may or may not be irredu
ible. It may10



be irredu
ible even when dim(P±
0 ) > 1 At �rst sight this 
ontradi
ts lemma?? but remember that σ± determine maps between P±

0 .We re
ord some trivial properties of the elements ǫi, εi, Fi, σ± and therotation ρ in a Hilbert P -module.For the rest of this se
tion,unless otherwise stated, planar algebras willbe C∗ ones and P -module will mean Hilbert P -module.Proposition 3.3 The following hold in ATL(δ):(i) ǫ∗i = εi(ii) ǫ∗i ǫi = Fi and ǫiǫ∗i = δid(iii) ρ is unitary, i.e. ρρ∗ = ρ∗ρ = 1(iv) F ∗
i = Fi and if fi = δ−1Fi, fi is a proje
tion, i.e. f2

i = fi.(v) (σ+)∗ = σ−.Lemma 3.4 Let V be a P -module. Suppose W ⊆ Vk is an irredu
ible APk-submodule of Vk for some k. Then AP (W ) is an irredu
ible P -submodule of
V . Proof. By ?? it su�
es to show that AP (W )m is an irredu
ible APm-module for ea
h m. But if v and w are non-zero elements of AP (W )mwith APm(v) orthogonal to APm(w) then write v = av′ and w = bw′ for
a, b ∈ AP (m, k) and v′, w′ ∈ W . Then a∗v = a∗av′ and b∗w = b∗bw′ arenon-zero elements of W with APk(a∗v) orthogonal to APk(a∗w). �Lemma 3.5 Let U1 and U2 be orthogonal APk-invariant subspa
es of Vk fora P -module V . Then AP (U1) is orthogonal to AP (U2).Proof. This follows immediately from invarian
e of 〈, 〉. �Remark 3.6 Lemmas ?? and ?? give a 
anoni
al de
omposition of a P -module V as a 
ountable orthogonal sum of irredu
ibles. First de
ompose
Vwt(V ) into an orthogonal dire
t sum of irredu
ible APwt(V )-modules. Ea
hirredu
ible summand Wi will de�ne a P -submodule AP (Wi) and the AP (Wi)are mutually orthogonal. The orthogonal 
omplement of the AP (Wi) has ahigher weight than V so one may 
ontinue the pro
ess.Conversely, given a sequen
e of P -modules V i with limi→∞(wt(V i)) = ∞one may form the 
ountable orthogonal dire
t sum of P -modules ⊕iVi.Thus the dimension of a P− module is the 
ountable sum of the dimen-sions of irredu
ible modules whose weights tend to in�nity, so the sum offormal power series makes sense. We guess that the dimension of an irre-du
ible P -module has radius of 
onvergen
e at least as big as δ−2 if P hasmodulus δ. 11



Lemma 3.7 Suppose V and W are two P -modules with V irredu
ible, andthat θ : Vk → Wk is a non-zero APk homomorphism. Then θ extends to aninje
tive homomorphism Θ of P -modules.Proof. Sin
e V is irredu
ible, for all m, any v ∈ Vm is of the form
av0 for v0 ∈ Vk and a ∈ AP (m, k). Set Θ(v) = a(θ(v0)). To see that
Θ is well de�ned it su�
es to 
he
k inner produ
ts with other ve
tors in
AP (m, k)(Wk). Indeed, suppose av0 = bv0. Then for any w0 ∈ Wk, and any
c ∈ AP ,

〈a(θ(v0)), cw0〉 = 〈c∗a(θ(v0)), w0〉
= 〈θ(c∗av0), w0〉
= 〈θ(c∗bv0), w0〉
= 〈b(θ(v0)), cw0〉.Thus Θ is well de�ned, a P -module homomorphism by 
onstru
tion andinje
tive sin
e V is irredu
ible. �Thus in parti
ular an irredu
ible P -module is determined by its lowestweight module. Not all APwt(P )-modules 
an be lowest weight modules as weshall see. Let ÂPk be the ideal of APk spanned by elements of AnnP (k, k)of rank (see ??) stri
tly less than 2k.Lemma 3.8 If V is a P -module let Wk be the APk-submodule of Vk spannedby the k-graded pie
es of all P -submodules of weight < k. Then

W⊥
k =

⋂

a∈ dAPk

ker(a)Proof. (i) Choose w ∈ Wk. By de�nition it is a linear 
ombination ofelements of the form aw′ with a ∈ AnnP (k,m) for m < k. But then for
v ∈ Vk

〈aw′, v〉 = 〈w′, a∗v〉and a∗ 
an be written up to a power of δ as the 
omposition t∗ta∗ for anappropriate AnnTL tangle t. But then ta∗ has rank at most m. So if
v ∈ ker(ta∗), a∗v = 0. Hen
e w is orthogonal to ⋂

a∈ dAPk
ker(a).(ii)Now suppose v ⊥ Wk and a ∈ ÂPk. Then a is a linear 
ombination ofelements of the form bc for some c ∈ AnnP (m, k) and b ∈ AnnP (k,m) forsome m < k. For su
h a bc and any w ∈ Wk we have 〈bcv, w〉 = 〈v, c∗b∗w〉whi
h is zero be
ause b∗w is in Vm and therefore a linear 
ombination ofve
tors in P -submodules of weight < k. �In the spe
ial 
ase of the Temperley Lieb algebra TL we get the following,where Wk has the same meaning as in the previous lemma.12



Corollary 3.9 If V is a TL-module then W⊥
k =

⋂
i=1,2..,2k ker(ǫi)Proof. The ideal ÂTLk is spanned by Temperley Lieb diagrams with lessthan 2k through strings, ea
h of whi
h ne
essarily fa
torises as a produ
twith some ǫi. �Corollary 3.10 The lowest weight module of an irredu
ible P -module ofweight k is an APk

ÂPk
-module.De�nition 3.11 For ea
h k we de�ne the lowest weight algebra at weight k

LWPk to be the quotient LWPk =
APk

ÂPk
.We see that the job of listing all P -modules breaks down into 2 steps.Step (i) Cal
ulate the algebras LWPk and their irredu
ible modules.Step (ii) Determine whi
h LWPk-modules extend to P -modules.The algebra LWPk is usually mu
h smaller than APk. For instan
e inthe 
ase of ATL it is abelian of dimension k (for k > 0) whereas ATLk isin�nite dimensional.We shall now show how to equip AP with a C∗-norm whi
h 
an be usedto make it into a C∗-
ategory. We �rst need a uniform bound on labelledtangles.Lemma 3.12 Let P be a C∗-planar algebra and V a P -module. Suppose Tis a labelled tangle in AnnP . Then T de�nes a linear map between the �nitedimensional spa
es Vk and Vm. We have

||T || ≤ C
∏internal dis
s of T ||a||where the 
onstant C depends only on the unlabelled tangle subja
ent to Tand the a's are the elements of P labelling the dis
s (whi
h have norms sin
e

P is C∗)Proof. Arrange the tangle so that the inner and outer boundaries are
on
entri
 
ir
les 
entred at the origin with internal radius R0 and externalradius R. Let r denote the distan
e to the origin. Isotope the tangle so thatthere is a partition R0 < R1 < R2 < · · · < R with only the following threesituations in ea
h annulus Ai where r runs from Ri to R(i+1):13



(i) There are no internal tangles in Ai and r has no maxima or minimain Ai. In this 
ase the annular tangle inside Ai is a power of the rotation ρ.(ii) There are no internal tangles in Ai and r has a single lo
al maximum(minimum) inside Ai. In this 
ase the annular tangle inside Ai is ǫj (εj).(iii) There is a single k-dis
 D labelled a inside Ai, and all strings of thetangle inside Ai are intervals of rays from the origin.We see that in any P -module V the linear map de�ned by T fa
torizes asa produ
t of ρ's, ǫ's and maps de�ned by the very simple tangle of situation(iii) above. By ?? we only have to show the norm of a tangle Q in situation(iii) is less than ||a||. This 
an be a
hieved as follows: we may suppose thathalf the strings of Q whi
h meet the dis
 D are ray intervals beginning onthe inside boundary of Ai. The map from Pk to AP whi
h sends x to thethe tangle in Ai with D labelled by x is a ∗-algebra homomorphism so sin
e
Pk is a C∗-algebra we are through. �We may thus make the following:De�nition 3.13 If P is a C∗-planar algebra and a ∈ AP (n,m) we de�nethe norm of a to be

||a|| = supall P-modules V ||ρ
V
(a)||where ρ

V
(a) is the linear map from Vm to Vn determined by a and V .This makes AP into a C∗-
ategory and in parti
ular all the APk be
ome

C∗-algebras. They are of type I for ATL but we do not know if they are oftype I in general.4 Fa
ts about the ordinary Temperley-Lieb al-gebra.For the 
onvenien
e of the reader let us �rst re
all some fa
ts the ordinary(non-annular) Temperley-Lieb algebra and its representations. These fa
tswill be used in the proofs below and 
an all be dedu
ed easily from [?℄,[?℄and Kau�man's diagrammati
 in [?℄.Fix a 
omplex number δ. The Temperley Lieb algebra TLn on n stringsadmits the following presentation as an algebra:Generators: {Ei : i = 1, 2, .., n− 1} (and an identity, 1).Relations: E2
i = δEi, EiEj = EjEi for |i− j| ≥ 2, EiEi±1Ei = Ei.The algebra 
an be alternatively de�ned as that having a basis 
onsisist-ing of all 
onne
ted n-tangles with the boundary 
onveniently deformed to14



a horizontal re
tangle having the �rst boundary point, by 
onvention, at thetop left. Then Ei is the tangle with all boundary points ex
ept four 
on-ne
ted by verti
al lines and the i-th. and i+1-th. on the top (resp. bottom)
onne
ted to ea
h other by a 
urve 
lose to the top (resp. bottom) boundary.There is an adjoint operation a → a∗ on TLn de�ned by sesquilinear exten-sion of the operation on tangles whi
h is re�e
tion in a horizontal line halfway up the tangle. Alternatively, the operation ∗ is the unique anti-involutionfor whi
h E∗
i = Ei.Fa
t 4.1 The dimension of TLn is 1

n+1

(
2n
n

).
TLn 
an, and will, be identi�ed unitally with the subalgebra of TLn+1alternatively by adding a verti
al string to the right of the re
tangle de�ning

TLn, or by identifying the �rst n− 1 generators of Tn+1 with those of TLn.Fa
t 4.2 The map x → 1
δ
xEn+1 de�nes an algebra isomorphism of TLn ontothe "
orner" subalgebra En+1(TLn+2)En+1.Fa
t 4.3 TLn is a C∗-algebra, hen
e semisimple, for δ ∈ R, δ ≥ 2.De�ne the T
heby
hev polynomials in δ by Pk+1 = δPk − Pk−1, with

P0 = 0 and P1 = 1 so that if δ = 2 sinh(x) we have
Pk(δ) =

sinh(kx)

sinh(x).Fa
t 4.4 For δ ≥ 2 let 1− pn denote the identity of the ideal of TLn de�nedalternatively as the linear span of diagrams with at most n−1 through stringsor the linear span of non-empty words on the Ei. Then p1 = 1 and
pn+1 = pn −

Pn
Pn+1

pnEnpn.Fa
t 4.5 We have p2
n = p∗n = p2

n and pn is the unique non-zero idempotentin TLn for whi
h pnEi = Eipn = 0 for all i < n.The element pn 
an thus be de�ned as the linear 
oe�
ient of wordsin the Ei's (or alternatively n-tangles) de�ned by the above formula. The
oe�
ients of the individual words do not appear to be known expli
itly.Graham and Lehrer in [?℄ obtain expli
it formulae at spe
ial values of δ. Animproved knowledge of these 
oe�
ients is desirable but we will need onlythe following very simple 
ase. 15



Lemma 4.6 For 1 ≤ r ≤ n− 1, the 
oe�
ient of En−1En−2....Er in pn is
(−1)r sinh(rx)

sinh(nx)
.Proof. The only way to obtain the term En−1En−2....En−r in Wenzl'sformula in ?? is to multiply En−1 by the term En−2En−2....En−r in TLn−1.So by indu
tion we are done. �For ea
h t ≤ n with n−t even we 
onsider the ve
tor spa
e V t

n having as abasis the set V tn of all re
tangular horizontal Temperley-Lieb (n+t)/2-tangleswith t boundary points on the bottom and n points on the top with all strings
onne
ted to the bottom boundary points being through strings. V t
n be
omesa TLn-module by joining the top of an element of V tn with the bottom of anelement of TLn. Remove any 
losed 
ir
les formed as usual, ea
h one 
ountinga multipli
ative fa
tor of δ. If there are less than t through strings the resultis zero. There is an inner produ
t on V t

n de�ned as 〈x, y〉 = φ(y∗x) where
φ is the map from TLt to the one dimensional quotient of TLt by the idealspanned by TL tangles with less than t through strings.Fa
t 4.7 The dimension of V t

n is (
n

n−t
2

)
−

(
n

n−t−2

2

).Fa
t 4.8 For δ ≥ 2 ea
h representation V t
n is irredu
ible and any irredu
iblerepresentation of TLn is isomorphi
 to a V t
n .Fa
t 4.9 The inner produ
t is invariant, i.e 〈ax, y〉 = 〈x, a∗y〉 for a ∈ TLnand positive de�nite. It is the unique invariant inner produ
t on V t

n up to as
alar multiple.Proposition 4.10 If δ > 2 and 0 ≤ t < n with n−t even, a representation πof TLn on V 
ontains V t
n if and only if the restri
tion of π to En−1(TLn)En−1(on π(En−1)V ) 
ontains V t

n−2. If π is irredu
ible, an invariant inner produ
ton V is positive de�nite if and only if it restri
ts to a positive de�nite oneon π(En−1)V .Proof. Note �rst that by ?? En−1(TLn)En−1 is isomorphi
 to TL(n− 2)so the assertion makes sense. But it is also 
lear that the subspa
e En−1V
t
nis isomorphi
 as an En−1(TLn)En−1-module to V t

n−2. So the 
ontainment as-sertion follows by de
omposing V and π(En−1)V as TLn and TLn−2-modulesrespe
tively. The assertion about the inner produ
ts is and immediate 
on-sequen
e of ??. �For appendix ?? we will also need some information about the Hilbertspa
e representations of the ordinary TL algebra when δ = 2cos π
m
and m =16



3, 4, 5, ... For these values of δ the TL-algebra has a largest C∗ quotient whoseBratelli diagram is well known-see [?℄ or [?℄. We will 
all this quotient TLn,whi
h is an abuse of notation. The modules V n
t admit quotients whi
h areHilbert spa
es on whi
h TLn is represented as a C∗-algebra. Continuing theabuse of notation we will 
all these Hilbert spa
e representations V t

n .Fa
t 4.11 If δ = 2cos π
m

with m = 3, 4, 5, ... the TLn modules are uniquelyde�ned up to isomorphism by the 
onditions:
V t
n = 0 for t < 0 or t > n

V n
n = C for n ≤ m− 2

V m−1
m−1 = 0

V t
n = V t−1

n−1 ⊕ V t+1
n−1 as TLn−1-modules .All su
h representations have dimensions less than or equal to their generi
values.This fa
t is equivalent to the stru
ture of the Bratteli diagram ([?℄).5 The TL-modules for δ > 2.We will use the approa
h outlined after de�nition ?? to obtain all TL-modules. The �rst step is very easy- the algebras ATLk

ÂTLk

and their irredu
iblemodules are determined (for any δ) in the next lemma, for k > 0.Lemma 5.1 For k > 0 the quotient ATLk

ÂTLk

is generated by the rotation ρ, thusits irredu
ible representations are 1-dimensional and parametrized naturallyby the kth. root of unity by whi
h ρ a
ts.Proof. If all strings are through strings a (k, k)-tangle is ne
essarily apower of ρ.�For the rest of this se
tion we will suppose δ > 2. This simpli�es thesituation 
onsiderably. For δ ≤ 2 the quotient of ATLk by the zero through-string ideal is no longer semisimple.To see that ea
h representation of the previous lemma extends to a TL-module, we begin by 
onstru
ting modules of lowest weight k, V k,ω,for ω a
kth. root of unity, quite expli
itly in a way very similar to the 
onstru
tionof the non-annular Temperley-Lieb modules in the previous se
tion.17



De�nition 5.2 Let ÃTLm,k be the quotient of ATLm,k by the subspa
e spannedby tangles with less than 2k through strings. (So that ÃTLm,k = 0 if m < k.)Sin
e the number of through strings does not in
rease under 
ompositionof tangles, ÃTLm,k is a TL-module of lowest weight k. One may des
ribethis TL-module quite expli
itly in terms of a basis as follows:For m ≥ k let Thm,k be the set of all ATLm,k tangles with k throughstrings and no 
losed 
ir
ular strings. Clearly the images of Thm,k in ÃTLm,kform a basis. We now des
ribe the a
tion of ATL on this basis.If T ∈ AnnTL(p,m) and Q ∈ Thm,k 
onsider the annular (p, k) tangle
TQ. Suppose TQ has c 
losed 
ir
ular strings and let T̂Q be TQ from whi
hthe 
losed strings have been removed.Then T (Q) is(i) 0 if TQ has less than 2k through strings.(ii) δc T̂Q otherwise.The group Z/kZ a
ts on ÃTLm,k by internal rotation, freely permutingthe basis Thm,k. This a
tion 
ommutes with the a
tion of ATL. Thus the
TL-module ÃTLm,k splits as a dire
t sum, over the kth. roots of unity ω, of
TL-modules whi
h are the eigenspa
es for the a
tion of Z/kZ with eigenvalue
ω. These are the V k,ω with V k,ω

m being the ω-eigensubspa
e of ÃTLm,k.Proposition 5.3 The dimension of V k,ω
m is (

2m

m− k

) for m ≥ k (and zerofor m < k).Proof. Sin
e the a
tion of Z/kZ is free, the dimension of V k,ω
m is dim(ÃTLm,k)/kand it was shown in [?℄ that dim(ÃTLm,k) = k

(
2m
m−k

). �Let C(z) =
1 −

√
1 − 4z

2z
, the generating fun
tion for the Catalan num-bers.Corollary 5.4 The dimension of the TL-module V k,ω is zk C(z)2k

√
1 − 4z

.Proof. By ?? the generating fun
tion for dim(V k,ω
m ) is zk ∞∑

r=0

(
2k + 2r

r

)
zr.By [?℄ page 203 this gives the answer above. �For ea
h k 
hoose a faithful tra
e tr on the abelian C∗-algebra ÃTLk,k.Extend tr to all of ATLk,k by 
omposition with the quotient map. Use tr tode�ne an inner produ
t on the whole TL-module ÃTLm,k as follows.18



Given S, T ∈ ATLm,k, T ∗S is in ATLk,k so we set
〈S, T 〉 = tr(T ∗S)This inner produ
t 
learly satis�es 〈av, w〉 = 〈v, a∗w〉 as in de�nition ??.And the rotation is 
learly unitary so that the de
omposition into the V k,ωis orthogonal. The main result of this se
tion will be to show that the innerprodu
t is positive de�nite for δ > 2, whi
h is not always the 
ase when

δ ≤ 2.De�nition 5.5 Let ψωk be a ve
tor in V k,ω
k proportional to ∑k

j=1 ω
−jρj with

〈ψωk , ψωk 〉 = 1 .Observe that ǫiψωk = 0 for i = 1, 2, ...2k. This is be
ause ǫiψωk is in
V k,ω
k−1 whi
h is zero.Proposition 5.6 All inner produ
ts in V k,ω are determined by the three for-mulae

ǫiψ
ω
k = 0 for i = 1, 2, ...2k

〈ψωk , ψωk 〉 = 1

ρ(ψωk ) = ωψωkProof. V k,ω is spanned by annular TL-tangles applied to ψωk . When 
al
u-lating the partition fun
tion of su
h an R∗Q the answer will be zero unlessall the strings leaving one ψωk are 
onne
ted to the other. If they are not,
R∗Q 
ontains some ǫi applied to some ψωk . If the two ψωk 's are 
ompletelyjoined, one may apply some power of ρ so that, after removing 
losed 
ir
les,the tangle R∗Q is exa
tly that whose partition fun
tion gives 〈ψωk , ψωk 〉. �Theorem 5.7 For ea
h k ≥ 1 and for ea
h kth. root of unity ω, the repre-sentation of ATLk of lemma ?? extends to a representation Γk,ω on V k,ω oflowest weight k, making V k,ω into a Hilbert TL-module.Proof. It su�
es to show that 〈, 〉 is positive de�nite on ea
h V k,ω

m whi
hwe will do by indu
tion on m as follows.Think of the annulus for annular (m,m)-tangles as two 
on
entri
 
ir-
les with distinguished boundary points evenly spa
ed, and draw a straightline between inner and outer boundaries half way between the 2mth. and�rst boundary points. The subalgebra Am of ATLm spanned by annulartangles never 
rossing this straight line is 
learly isomorphi
 to the usualTemperley-Lieb algebra TL2m, with elements F1, F2, .., F2m−1 of de�nition19



?? 
orresponding to the usual TL generators E1, ..., E2m−1. The exa
t asser-tion we will prove by indu
tion is the following:Assertion: As aAm-module, V k,ω
m is isomorphi
 to ⊕

j=2k,2k+2,2k+4,...,2m V
j
2m,the sum being orthogonal with respe
t to the positive de�nite form 〈, 〉.The 
ase k = m is 
overed by the de�nition, so suppose the assertion istrue for m − 1 whi
h is ≥ k. Identify Am−1 with F2m−1AmF2m−1 as in ??.Pi
tures show that the map x → ε2m−1(x)/δ is an isometry (for 〈, 〉) of V k,ω

m−1onto the subspa
e Fm−1V
k,ω
m whi
h intertwines the a
tions of Am−1 and Am.Proposition ?? shows that V k,ω

m 
ontains V j
2m for j = 2k, 2k + 2, ...2m− 2.By ?? V k,ω

m 
ontains a submodule whose dimension is a teles
oping sumadding up to (
2m
m−k

)
− 1. Sin
e dimV k,ω

m =
(

2m
m−k

) we 
on
lude that V k,ω
m
ontains ea
h V k

m exa
tly on
e and sin
e TLm is a C∗-algebra, that the sum⊕
j=2k,2k+2,2k+4,...,2m−2 V

j
2m is orthogonal. Thus we will be done if we 
an showthat there is a ve
tor orthogonal to ⊕

j=2k,2k+2,2k+4,...,2m−2 V
j

2m whose innerprodu
t with itself is stri
tly positive.The range of the idempotent p2m ∈ Am will be orthogonal to
⊕j=2k,2k+2,2k+4,...,2m−2V

j
2m sin
e 〈, 〉 is invariant and p2m = p∗2m. The onlyve
tors v of V k,ω

m obtained by applying elements of Thm,k to ψωk for whi
h
p2m(v) 6= 0 are proportional to the ve
tor ξ depi
ted below. Note that wehave not starred an initial region on the internal boundary. The lo
ation ofsu
h a ∗ would depend on the parity of m− k and any 
hoi
e of ∗ will di�eronly by a kth. root of unity whi
h will be irrelevant to our argument. Anexpli
it 
hoi
e of ξ would be ε2mε2m−3ε2m−4ε2m−7ε2m−8...(ψ

ω
k ), with the lastsubs
ript of ε being even or odd depending on the parity of m− k.Let ζ = p2m(ξ). To show that 〈ζ, ζ〉 > 0 we 
ould apply proposition

4.2 of [?℄ but be
ause of di�eren
es in the setup su
h as spe
ialisation tonon-positive values and the 
olouring restri
tion we prefer to give anotherproof.We begin by proving, by 
ontradi
tion, that 〈ζ, ζ〉 
annot be 0. This willbe the main step in the proof of the theorem. So suppose 〈ζ, ζ〉 = 0. Theform 〈, 〉 is then positive semide�nite and ζ spans its kernel. (Note that ζ isnot zero sin
e when one expands p2m as a linear 
ombination of words, thereis only one term that gives ξ, namely the identity of Am.) Sin
e the kernelof a form is invariant under any isometry we 
on
lude that Adρ 1

2 (ζ) = zζwhere Adρ 1

2 is the rotation by 1 of appendix ?? and z is a 
omplex numberof absolute value 1 (in fa
t a root of unity by ??).We shall now determine whi
h words in the sum for p2m 
ontribute to the
oe�
ient of ξ in ζ and Adρ 1

2 (ζ). We draw pi
tures of all the elements below20



where we have deformed the annulus into the region between two re
tanglesand the outer annulus 
ontains ψωk . The distinguished boundary regions aremarked with a ∗ in all 
ases. The only way to obtain ξ from a summand of
p2m is to take the identity whose 
oe�
ient is of 
ourse 1. This follows frominspe
tion of the �gure below. Note that we have redrawn ξ by deformingthe inner annulus boundary into a re
tangle with all the 2k boundary pointson top. This is to help visualise what is happening inside the box 
ontaining
p2m whi
h we have also drawn as a re
tangle with 2m input strings at thebottom and 2m output ones at the top.Now 
onsider Adρ 1

2 (ξ) as below:The 
oe�
ient of ξ in (Adρ
1

2 )−1(ζ) is the same as the 
oe�
ient of
Adρ

1

2 (ξ) in ζ so we must 
onsider all possible TL tangles that 
an be in-serted into the re
tangle R 
ontaining p2m that will give the above pi
ture of
Adρ

1

2 (ξ). If su
h a tangle has less than 2m−2 through strings then there is ahomologi
ally non-trivial 
ir
le in the annulus whi
h interse
ts the strings ofthe tangle less than 2m−2 times, whereas any su
h 
ir
le in the diagram for
Adρ

1

2 (ξ) interse
ts the strings of the tangle at least 2m− 2 times. And theremust be some non-through strings sin
e the identity inserted into R gives
ξ itself. So at both the top and bottom of R there is pre
isely one pair ofneighbouring boundary points 
onne
ted to ea
h other. Number the bound-ary points at the top of R as 1, 2, .., r, r+ 1, r+ 2, .., r+ 2k, r+ 2k + 1, .., 2mwhere r + k = m, and the same on the bottom. Then if i and i + 1 are
onne
ted on the bottom of R for i < r or i > r + 2k the same argument aswe used to get 2m− 2 through strings applies and we do not get Adρ 1

2 (ξ). Ifthey are 
onne
ted for i between r+1 and r+2k−1 we get zero. So the onlyallowed 
onne
tions on the bottom are between r and r+1 or between r+2kand r + 2k + 1. On the top of R it is 
lear that the only boundary pointsthat 
an be 
onne
ted are 2m− 1 and 2m. Moreover we see the two tangleswith both these top and bottom 
ombinations do indeed give roots of unitytimes ξ. As words on the Ei, these two tangles are E2m−1E2m−2...Er+2k and
E2m−1E2m−2...Er. So by ?? we dedu
e that there are 
omplex numbers z1 and
z2 of absolute value 1 (in fa
t both roots of unity) so that, if δ = 2cosh(x),

z1 sinh((r + 2k)x) + z2 sinh(rx)

sinh(2mx)
= 1.21



But sin
e sinh(2mx) = sinh(rx) cosh((r+2k)x)+sinh((r+2k)x) cosh(rx)and cosh t > 1 for t 6= 0, this is impossible for x 6= 0. This 
ontradi
ts thehypothesis that 〈ζ, ζ〉 = 0.We now need to rule out the possibility that 〈ζ, ζ〉 < 0. But the interval
(2,∞) is 
onne
ted and 〈ζ, ζ〉 is a 
ontinuous fun
tion sin
e the polynomialsin the denominators appearing in p2m have all their zeros in [−2, 2]. So itsu�
es to exhibit a single value of δ greater than 2 for whi
h 〈ζ, ζ〉 ≥ 0. In[?℄ we showed that ea
h of the modules V k,ω

m , for δ any integer n ≥ 3, o

ursas a summand of the tensor produ
t of m 
opies of the 3x3 matri
es whi
hhas a natural ATL stru
ture and positive de�nite inner produ
t.So V k,ω
m has theA-module stru
ture we asserted and 〈, 〉 is positive de�niteon it. By indu
tion we are through. �Corollary 5.8 The Hilbert TL-module V k,ω is irredu
ible.Proof. V k,ω is ATL(ψk,ω) so apply ??. �We now take up the 
ase of TL-modules with lowest weight 0. This issomewhat di�erent from the previous situation as the algebras ATL± arein�nite dimensional.Proposition 5.9 The abelian algebra ATL± is generated by the positive self-adjoint element σ∓σ±.Proof. After removing any homologi
ally trivial 
ir
les (whi
h 
ount for afa
tor of δ by note (iii) after de�nition ??), an annular (0, 0)-tangle 
onsistsof an even number of homologi
ally non-trivial 
ir
les inside the annulus,whi
h is by de�nition a power of σ∓σ±. Positivity of σ∓σ± follows from ??.

�Corollary 5.10 In an irredu
ible Hilbert TL-module V of lowest weight 0the dimensions of V± are 0 or 1 and the maps σ∓σ± are both given by a singlereal number µ2 with 0 ≤ µ ≤ δ.Remark 5.11 The number µ above 
orresponds to the z + z−1 of Grahamand Lehrer. The main di�eren
e between their setup and ours is that a singlehomologi
ally non-trivial 
ir
le in an annulus does not a
t by a s
alar in anirredu
ible representation - it is in fa
t the map σ±.Theorem 5.12 An irredu
ible Hilbert TL-module V of weight 0 is deter-mined up to isomorphism by the dimensions of V± and the number µ de�nedin 
orollary ??. Moreover 0 ≤ µ ≤ δ .22



Proof. The uniqueness of the TL-module is a 
onsequen
e of ?? sin
e atleast one of V+ and V− is non-zero. By de�nition, µ ≥ 0. To see that µ ≤ δ,note that in an irredu
ible Hilbert TL-module V , as operators on V1, theelements F1 and F2 satisfy F1F2F1 = µ2F1, and 1
δ
F1 and 1

δ
F2 are proje
tions.

� We now take up the existen
e of Hilbert TL-modules of lowest weight 0.There is one value of µ for whi
h the TL-module has already been 
onstru
tedand that is of 
ourse µ = δ. Let V δ
k = TLk. By ?? we know that V δ

k is aHilbert TL-module sin
e δ > 2. We have thus established the following.Proposition 5.13 Any irredu
ible Hilbert TL-module of lowest weight zeroand µ = δ is isomorphi
 to V δ.We now obtain all irredu
ible TL-modules of lowest weight 0 with 0 <
µ < δ.De�nition 5.14 For ea
h k > 0 and ± when k = 0 let Thk be the set of allannular (k,+)-tangles with no homologi
ally trivial 
ir
les and at most onehomologi
ally non-trivial one.Lemma 5.15 The 
ardinality of Thk is (

2k
k

), and 1 when k = 0.Proof. Su
h a tangle 
onsists of an ordinary Temperley Lieb diagram withthe outer annulus boundary in either a shaded or unshaded region a

ordingto whether it is or is not surrounded by a homologi
ally non-trivial 
ir
le.There are k + 1 regions in an ordinary TL k-tangle. �Now for ea
h number µ we form the graded ve
tor spa
e V µ, whose kth.graded 
omponent has a basis Thk , and equip it with a TL-module stru
tureof lowest weight 0 as follows:If T is an ATL(n, k)-tangle and R ∈ Thk, form the tangle TR. Let c bethe number of 
ontra
tible 
ir
les in TR. Suppose the inner boundary 
ir
lein TR is surrounded by 2d+ γ homologi
ally non-trivial 
ir
les where γ is 0or 1. Then
T (R) = δcµ2dT̂Rwhere T̂R is TR from whi
h all 
ontra
tible 
ir
les and 2d of the non-
ontra
tible ones have been removed.Proposition 5.16 The above de�nition makes V µ into a TL-module of di-mension 1√

1−4z
, in whi
h σ±σ∓ = µ2.23



Proof. In the pi
ture for T1T2R (without any 
ir
les removed), 
ir
les, 
on-tra
tible or not, are either formed already in T2R or formed when T1 is appliedto it. The dimension formula follows from ?? and page 203 of [?℄. �Note that the 
hoi
e of (k,+)-tangles rather than (k,−) ones to de�ne
V µ was arbitrary. If we had made the other 
hoi
e the map T → µ−1Tσ+would have de�ned an isometri
 TL-module isomorphism with the 
hoi
e wehave made. We now de�ne an invariant inner produ
t on V µ.De�nition 5.17 Given S, T ∈ Thk let 〈S, T 〉 = δcµ2d where c is the numberof 
ontra
tible 
ir
les in the (±,±)-tangle T ∗S and d is half the number ofnon-
ontra
tible ones.Invarian
e of 〈, 〉 follows from the fa
t that T ∗S = 〈S, T 〉T0 where T0 isthe annular (±,±)-tangle with no strings whatsoever.Theorem 5.18 For 0 < µ < δ the above inner produ
t is positive de�niteand so makes V µ into an irredu
ible Hilbert TL-module of lowest weight 0.Proof. The proof is stru
turally identi
al to that of theorem ??. De�ne thealgebra Am as before and make the same assertion to be proved by indu
tion,namely:Assertion: As a Am-module, V k,ω

m is isomorphi
 to ⊕
j=2k,2k+2,2k+4,...,2m V

j
2m,the sum being orthogonal with respe
t to the positive de�nite form 〈, 〉.By indu
tion we need only show that any ve
tor in the image of theidempotent p2m ∈ Am has non-zero inner produ
t with itself. The ve
tor ξbe
omes the tangle in Thm with m strings 
onne
ting the �rst m boundarypoints to the last m, going around the internal annulus boundary. If m isodd there are no 
ir
ular strings and if n is even there is one su
h stringsurrounding the internal annulus boundary. The ve
tor ζ is the result ofapplying p2m to ξ. We illustrate in the odd 
ase below.We are trying to show that 〈ζ, ζ〉 > 0 and we begin by supposing, by wayof 
ontradi
tion, that 〈ζ, ζ〉 = 0. This means that ζ is an eigenve
tor for therotation by one (see the appendix). As we did in ?? we must �nd the termsin the expansion of p2m as TL diagrams in ζ that give a multiple of Adρ 1

2 (ξ).We draw the unit ve
tor µAdρ 1

2 (ξ) below.24



It is 
lear that there is only one TL diagram that 
an be inserted in there
tangle R 
ontaining p2m. It is the one where the mth. boundary point atthe bottom of R is 
onne
ted to the (m+1)th., and the last boundary pointat the top R is 
onne
ted to the se
ond to last. All other strings must bethrough strings. This diagram is the word E2m−1E2m−2...Em so by fa
t ?? the
oe�
ient of µAdρ 1

2 (ξ) is, in absolute value, sinh(mx)

sinh(2mx)
where δ = 2cosh(x).So sin
e µ < δ < cosh(mx), this 
oe�
ient is never 1

µ
.This 
ontradi
ts the assumption that 〈ζ, ζ〉 = 0. The region

{(µ, δ) : 0 < µ < δ, δ > 2} is 
onne
ted so as in ?? it su�
es to �nd a singlevalue in that region for whi
h 〈, 〉 is positive semide�nite. Here we appealto [?℄ where we gave planar algebras P with spheri
ally invariant partitionfun
tions for any (�nite) bipartite graph. The adja
en
y matrix Λ of thegraph has a simple meaning in our pi
ture. It is the matrix of the lineartransformation σ+ with respe
t to bases of minimal proje
tions of P+
0 and

P−
0 . The parameter δ of the planar algebra is the norm of Λ, i.e. the squareroot of the largest eigenvalue of ΛTΛ. Choose a unit eigenve
tor v of ΛTΛwhose eigenvalue is between 0 and δ2. And let µ be the positive square rootof this eigenvalue. Consider the TL-submodule ATL(v) of P generated by
v. It is linearly spanned by ∪kThk(v). Moreover the inner produ
t betweenve
tors in ATL(v) is given pre
isely by the formula ?? used to de�ne theinner produ
t in V µ

k . But the inner produ
t on the planar algebra P is by
onstru
tion positive de�nite so the one on V µ
k is positive semide�nite. Hen
e

〈ζ, ζ〉 > 0 and the indu
tive assertion is true for m.Irredu
ibility follows from ?? as before. �The last 
ase to 
onsider in the generi
 region δ > 2 is the 
ase µ = 0.De�nition 5.19 For ea
h k let Th±k be the set of annular (k,±)-tangles withno 
ir
ular strings, 
ontra
tible or otherwise.Lemma 5.20 The 
ardinality of Th±k is 1

2

(
2k

k

) if k > 0, 1 if k = ± and 0if k = ∓.Proof. The set Th±k splits into two subsets of equal 
ardinality-thosewhere there is a single non-
ontra
tible 
ir
le and those where there is none.The result then follows from ??. �Now we form the graded ve
tor spa
e V 0,±, whose kth. graded 
omponenthas a basis Th±k , and equip it with a TL-module stru
ture of lowest weight
0 as follows: 25



If T is an ATL(n, k)-tangle and R ∈ Th±k , form the tangle TR. Let c bethe number of 
ontra
tible 
ir
les in TR. Then
T (R) =

{
0 if there is a non-
ontra
tible 
ir
le in TR
δc T̂R otherwisewhere T̂R is TR from whi
h all 
ontra
tible 
ir
les and 2d of the non-
ontra
tible ones have been removed.Proposition 5.21 The above de�nition makes V 0,± into a TL-module ofdimension 1

2
√

1−4z
, in whi
h σ± = 0.Proof. The module property follows as in ??. The dimension formulafollows from the way the k = 0 
ase is handled in ?? and ??. Finally, σ±
reates a non-
ontra
tible 
ir
le. �We now de�ne an inner produ
t on V 0,±.De�nition 5.22 Given S, T ∈ Th±k , suppose there are c 
ontra
tible 
ir
lesin S∗T . Then set

〈T, S〉 =

{
0 if there is a non-
ontra
tible 
ir
le in S∗T
δc otherwiseThis inner produ
t is invariant for the same reason as before.Theorem 5.23 For δ ≥ 2 the above inner produ
t is positive de�nite and somakes V 0,± into an irredu
ible Hilbert TL-module of lowest weight 0.Proof. Again the proof will be via an indu
tive de
omposition of V 0,±

m withrespe
t to non-annular TL. The rotation by one is not available but we givea 
losely related argument whi
h shows that it is not really the rotation byone that is important but the existen
e of two 
opies of non-annular TLwhi
h di�er with respe
t to the shading. For simpli
ity we will only do the
V 0,+ 
ase, the argument being the same in the other 
ase up to obviousmodi�
ations.Call TLa2m the Temperley Lieb algebra Am whi
h we have used in ??and set TLb2m = Adρ

1

2 (TLa2m). The indu
tive a�rmation we will prove is asfollows:A�rmation:The inner produ
t of ?? is positive de�nite on V 0,+
m , and for

m odd, as a TLa2m-module, V 0,+
m = ⊕j=2m,2m−4,..,2V

j
2m and as a TLb2m-module,

V 0,+
m = ⊕j=2m−2,2m−6,..,0V

j
2m. For m even the situation is reversed.Note that the fa
t that the dimensions involved in the a�rmation bothadd up to 1

2

(
2m
m

) are simple binomial identities 
oming from (1 − 1)2m = 0.26



For m = 0 and m = 1 the assertion is true. The m = 0 
ase dependsa bit too mu
h on 
onventions so one should 
he
k the 
ase m = 2 as well.Here V 0,+
2 is 3 dimensional and for TLa, E1 6= E3 6= 0 so by the stru
tureof TL4, V 0,+

2 must be the irredu
ible 3-dimensional representation. Withrespe
t to TLb, E1 = E3 6= 0 so the other two irredu
ible representationso

ur. Positive de�niteness of the inner produ
t is a trivial 
al
ulation.So we may suppose that the assertion is proved up to m− 1. If m is odd,redu
e by E2m ∈ TLb and use proposition ?? to 
on
lude that the stru
tureof V 0,+
m as a TLb2m-module is 
orre
t, hen
e the form is positive de�nite byuniqueness as in ??. Redu
ing by E2m ∈ TLa we see that the stru
ture of

V 0,+
m as a TLa2m-module is 
orre
t. If m is even, simply reverse the roles of aand b in the argument. We have only used positive de�niteness with respe
tto ordinary TL so the theorem is true for δ = 2 as well. �To end this se
tion let us summarize our results. We have obtained a
omplete list of all irredu
ible (hen
e all) Hilbert TL(δ)-modules for δ > 2and 
al
ulated their dimensions. They are distinguished by two invariants-the lowest weight k and another number whi
h is a kth. root of unity if
k > 0 and when k = 0 a real number µ with 0 ≤ µ ≤ δ. The 
ase µ = 0is ex
eptional in that there are two distin
t modules distinguished by theshading in the 0-graded 
omponent. The following table 
ontains all theinformation. The TL-modules for δ > 2Representation Lowest wt A
tion of ρ/σ± dimension dimV

V k,ω
n , n ≥ k > 0 n ρ = ωid

(
2n
n−k

)
zk C(z)2k

√
1−4z

ωn = 1

V TL
n 0 σ± = δid 1

n+1

(
2n
n

)
C(z)

V µ
n 0 σ±σ∓ = µ2id

(
2n
n

)
1√

1−4z

V 0,±
n 0 σ± = 0 1

2

(
2n
n

)
1

2
√

1−4z

dimV 0,±
± = 1

dimV 0,±
∓ = 0We may also present the information pi
torially. In the following pi
turethere is an irredu
ible representation for ea
h 
ross and ea
h point on thesegment [0, δ] (with 0 doubled as ±), and we have represented the pair (k, ω)by the 
omplex number kω. 27



6 The Poin
aré series of a planar algebra.De�nition 6.1 If P is a planar algebra the Poin
aré series of P is the di-mension of the trivial P -module, i.e.
ΦP =

1

2
(dimP+

0 + dimP−
0 ) +

∞∑

i=1

dimPiz
iThe question of what power series arise as Poin
aré series for planaralgebras seems to be a di�
ult one. If a planar algebra P 
ontains anotherone Q, P be
omes a Q-module. In the C∗-
ase P will be a 
ountable dire
tsum of Hilbert Q-modules so that the the Poin
aré series for P will be alinear 
ombination with non-negative integer 
oe�
ients of the dimensionsof Hilbert Q-modules. This 
an give pre
ise information on the Poin
aréseries for P .Every planar algebra 
ontains at least a quotient of the Temperley Liebplanar algebra so we 
an apply the method of the above paragraph with

Q = TL to obtain a formula for the Poin
aré series of a spheri
al C∗-planaralgebra with δ > 2 whi
h is parti
ularly simple sin
e all Hilbert TL-modulesof the same lowest weight have the same dimension by 
orollary ??.De�nition 6.2 Let P be a C∗ planar algebra with spheri
ally invariant pos-itive de�nite partition fun
tion with δ > 2 and dim(P±
0 ) = 1. De�ne ak tobe 1 for k = 0 and the number of 
opies of V k,ω, for all ω, in the TL-module

P , for k > 0. Let ΘP (q) be the generating fun
tion
ΘP (q) =

∞∑

j=0

ajq
jTheorem 6.3 With hypotheses as in ??,

ΘP (q) =
1 − q

1 + q
ΦP (

q

(1 + q)2
) + q.Proof. By remark ??, as a TL-module, P 
onsists of itself plus the sumfor ea
h k of ak TL-modules of the same dimension. So by ?? we have:

ΦP (z) = C(z) +

∑∞
k=1 akz

kC(z)2k

√
1 − 4zBut zC2 = C −1 so if q = zC2, C = q+1 and zC2 = z(1+ q)2 so z =

q

(1 + q)2
.Finally C = 1 + q implies √1 − 4z =

1 − q

1 + q
and we are done. �28



Corollary 6.4 With hypotheses as in ??,
ΘP (q)− q = 1 +

∞∑

r=1

[ r∑

n=0

(−1)r−n
2r

r + n

(
r + n

r − n

)
dim(Pn)

]
qr.Proof. Expanding (1 − q)qn

(1 + q)2n+1
by the binomial theorem we get

(1 − q)
∞∑

j=0

(−1)j
(

2n+ j

j

)
qj+n whi
h, using the binomial identity

(
a

j

)
+

(
a− 1

j − 1

)
=
a+ j

a

(
a

j

) (valid ex
ept when a = j = 0), equals
1 +

∞∑

j=1

(−1)j
2n+ j

j
qj+n. But

1 − q

1 + q
ΦP (

q

(1 + q)2
) =

∞∑

n=0

dim(Pn)
(1 − q)qn

(1 + q)2n+1
.Summing over r = n+ j and n we get the answer. �A C∗ planar algebra with spheri
ally invariant positive de�nite partitionfun
tion and dim(P±

0 ) = 1 is known to admit a "prin
ipal graph" (Λ, ∗).This is a bipartite graph with a distinguished vertex ∗ su
h that there is abasis of Pk indexed by the walks on Λ of length 2k starting and ending atthe distinguished vertex. Thus the Poin
aré series of the planar algebra isdetermined by Λ. It is not true however that, if (Λ, ∗) is a pointed bipartitegraph and wn is the number of loops of length 2n on Λ beginning and endingat ∗, that ar =

r∑

n=0

(−1)r−n
2r

r + n

(
r + n

r − n

)
wn is non-negative for all r > 1.The list of graphs (of norm >2) for whi
h any of these integers 
an be negativeseems to be quite short. All graphs eliminated in [?℄ have a negative ar when

r is one plus the "
riti
al depth". The same is true of the graphs Xn depi
tedbelow:The graphs Yn,2,2 depi
ted below have the property that an+1 = 1, an = 0,but an+2 = −1. Thus they 
annot be prin
ipal graphs of subfa
tors. Thiswas already proven by Haagerup in [?℄.
Yn,2,229



7 The Temperley-Lieb modules, δ ≤ 2.In se
tion ?? we will give two novel 
onstru
tions of the planar algebras ofsubfa
tors of index less than 4 (hen
e of the subfa
tors themselves). Thiswill use some fa
ts about Hilbert TL-modules for δ ≤ 2. In se
tion ??we gave a 
omplete des
ription of Hilbert TL-modules in the generi
 range.We simply showed that the inner produ
t on 
ertain spa
es of tangles werepositive de�nite. The situation for δ ≤ 2 is more 
ompli
ated. The spa
es oftangles V k,ω
n , V µ

n and V 0,±
n , together with the invariant inner produ
t, exist forall values of the parameters and have the dimensions 
al
ulated in se
tion??. But the inner produ
t is not always positive de�nite or even positivesemide�nite. In fa
t by proposition ?? a TL-module will exist i� the innerprodu
t is positive semide�nite(it is ne
essarily positive de�nite on the one-dimensional lowest weight subspa
e) sin
e we may then take the quotient bythe kernel of the form, whi
h is invariant under ATL.De�nition 7.1 Suppose the parameters are su
h that the inner produ
t ispositive semide�nite on V k,ω, V µ or V 0,±. We 
all Hk,ω,Hµ or H0,± respe
-tively the Hilbert TL module obtained by taking the quotient by the subspa
eof ve
tors of length 0. Otherwise we say that the Hilbert TL-module does notexist.In order to get qui
kly to the most original 
onstru
tions of this paperwe prefer to postpone the 
omplete 
lassi�
ation of the Hilbert TL-modules,in
luding the values of the parameters for whi
h they exist, to another paper.Also the 
onstru
tion of the D series of subfa
tors in index less than 4 
anbe easily a

omplished using a period 2 automorphism of the A series (whi
hwere already 
onstru
ted in [?℄)-see [?℄. The 
onstru
tions of subfa
tors ofindex equal to 4 are quite elementary. So we will limit our 
onstru
tion tothe more di�
ult 
ases of E6 and E8 whi
h were �rst 
onstru
ted in [?℄ and[?℄ respe
tively. Thus we gather together the information we will need in thefollowing spe
ial result whi
h admits immediate generalisation.Theorem 7.2 Let n be 12 or 30, let q be eiπ/n and δ = q + q−1. Suppose

µ > 0 is 1 or of the form qa + q−a with a and n relatively prime. Then if theHilbert TL-modules Hk,ω and Hµ exist, the quotient maps from V k,ω and V µare isomorphisms when restri
ted to the m − graded parts for m ≤ 3 when
n = 12 and m ≤ 5 when n = 30.Proof. Our hypotheses imply that the inner produ
ts on V k,ω and V µ

k arepositive semide�nite for the graded pie
es in question. (We will show theexisten
e of many of these Hilbert TL-modules below.)30



So in the indu
tive arguments of the theorems of se
tion ?? it su�
es toshow that the ve
tors ζ 
annot be eigenve
tors for Adρ 1

2 . We will do this asbefore by showing that the 
oe�
ients of ξ in ζ and Adρ− 1

2 (ζ) are di�erent.We begin with the 
ase k > 0 and let r + k = m as in ??. The formularelating the 
oe�
ients in this 
ase is
sin

2mπ

n
= z1 sin

rπ

n
+ z2 sin

(r + 2k)π

nwhere z1 and z2 are roots of unity. We need to look more 
losely at the natureof z1 and z2. Observe that the two terms on the right hand side 
ome fromthe diagrams below, where we have now been 
areful to �x a �rst boundarypoint on the inside annulus boundary.These two diagrams di�er in V k,ω
m by a fa
tor of ω so the above equation
an a
tually be rewritten (for some root of unity z)

(∗) z sin
2mπ

n
= sin

rπ

n
+ ω sin

(r + 2k)π

n(with perhaps some irrelevant ambiguity 
on
erning ω and ω−1).We only need to show that formula (∗) does not hold in any of the 
asesenumerated in the statement of the theorem. The 
ases ω = ±1 (hen
e
k = 1, 2) are ex
luded immediately by taking the absolute value and using theformula for the sine of the sum of two angles. This leaves only n = 30 and the
asesA) k = 3, r = 1, 2 and ω = e

2πi
3B) k = 4, r = 1 and ω = ±i.Case A) is seen to be impossible in absolute value simply by drawing

sin
rπ

30
and ω sin

(r + 2k)π

30
in the 
omplex plane. Taking absolute values in
ase B) would give sin2 π

3
= sin2 π

30
+ sin2 9π

30
whi
h is not true.The reader may wonder if it is ever possible for (∗) to be satis�ed. If we
hoose n = 12, k = 3, r = 1 and ω = e

2πi
3 we have the identity eπi

12 sin
8π

12
=

sin
π

12
+ e

2πi
3 sin

7π

12
. A similar identity holds for n = 30, k = 5, r = 1 and

ω = e
2πi
5 .We now turn to the 
ase k = 0. By the same argument as in theorem?? with a priori positive semide�niteness as above we see that the form willbe positive de�nite provided 2 cos mπ

n
is never equal to µ for the values of31



m under 
onsideration. This is obvious if n and a are relatively prime and
a 6= 1. If a = 1 we are in the TL situation and the quotient map from V δ to
Hδ must be an isomorphism sin
e the inner produ
t on the usual TL algebrais positive de�nite for the values of m in question (and indeed for m quite abit larger). In the 
ase µ = 1 one simply 
he
ks that 2 cos mπ

n
is not ±1. �8 Constru
tion of E6 and E8 subfa
tors.We begin by reviewing the non-existen
e proof for E7 given in [?℄, in thelanguage of the present paper. We want to extra
t information about the

E6 and E8 
ases. Let P be a C∗-planar algebra with spheri
ally invariantpositive de�nite partition fun
tion having prin
ipal graph (Λ, ∗). Assume ∗has only one edge 
onne
ted to it. We de�ned the notion of "
riti
al depth"
d in [?℄ to be 1 plus the distan
e from * to the �rst vertex of Λ of valen
egreater than 2. (So d = 3, 4, 5 for E6, E7 and E8 respe
tively.) De
omposingthe TL-module P into a sum of irredu
ible ones we see that P 
ontains thethe lowest weight 0 module Hδ and a lowest weight d module ne
essarily ofthe form Hd,ω for some dth. root of unity ω. Thus dim(Pd+1) is at least asbig as dim(TLd+1) + r where r is the rank of the sesquilinear form on V d,ω

d+1.On the other hand by 
ounting the number of loops starting and ending at
∗ on Λ we see that the dimension of Pd+1 is pre
isely dim(TLd+1) + 2d+ 1 if
Λ is E6, E7 or E8. So in order for su
h a planar algebra to exist there mustbe a dth. root of unity su
h that the sesquilinear form on V d,ω

d+1 is degenerate,or alternatively that there is a ve
tor ν ∈ V d,ω
d+1 with 〈ν, ν〉 = 0. It was shownin [?℄ that no su
h ve
tor exists for E7 so there 
an be no subfa
tor withprin
ipal graph E7.However there is su
h a ve
tor ν for E6 provided ω = e±

2πi
3 and for E8provided ω = e±

2πi
5 . We will use pre
ise formulae for these null ve
tors ν.First some notation.Suppose d and ω are as above and set

q =

{
e

πi
12 for E6

e
πi
30 for E8

κ =

{
e∓

πi
12 in the E6, e

± 2πi
3 
ase

e∓
πi
30 in the E8, e

± 2πi
5 
ase

η =

{
e∓

πi
2 in the E6, e

± 2πi
3 
ase

e∓
πi
3 in the E8, e

± 2πi
5 
ase32



δ = q + q−1Let ξ = ε2(ψ
d,ω) and ψ = ε3(ψ

d,ω). Let
ν =

d∑

j=0

ηjρj(ξ) − κ
d∑

j=0

ηjρj(ψ)Lemma 8.1 The ve
tor ν de�ned above in V d,ω is nul, i.e. 〈ν, ν〉 = 0.Proof. Let v =
∑d

j=0 ρ
j(ξ) and w =

∑d
j=0 ρ

j(ψ). Then the elements ρj(ψ)are mutually orthogonal ve
tors of length √
δ as are ρj(ψ) so that

〈v − κw, v − κw〉 = 2(d + 1)δ − 2Re(κ〈v, w〉).And 〈v, w〉 = (d + 1)
∑d

j=0〈ρj(ξ), ψ〉. But the only terms in this sum thatare not zero are the ones with j = 0 and j = 1. Thus the sum redu
es to
〈ξ, ψ〉+ η〈ρ(ξ), ψ〉 and sin
e ψd,ω is an eigenve
tor for ρ of eigenvalue ω, thissum is 1 + ηω. So 〈v− κw, v− κw〉 = 2(d+ 1)(δ−Re(κ(1 + ηω)). And withthe given 
hoi
es of κ, η and ω this is zero. �Note that we 
ould also have dedu
ed the above formula from the knowl-edge that there is a nul ve
tor whi
h has to be an eigenve
tor for Adρ 1

2 , thenapplying the 
omment near the end of theorem ??.We now 
ome to the main new idea in our 
onstru
tion. If the planaralgebra P existed one 
ould 
hoose an element ξ 6= 0 in Pd orthogonal to TLwhi
h would generate a 
opy of the TLmoduleHd,ω. We know from the aboveargument that ω is e± 2πi
3 for E6 and e± 2πi

5 for E8. And the element ξ will thenhave to satisfy the relation ν = 0 with ν as above. Our strategy will be tolook for su
h an element ξ in some (not 
onne
ted) planar algebra Q then usethe relation ν = 0 to show that the planar algebra R generated by ξ inside Qis in fa
t the planar algebra we want. Be
ause of the pau
ity of graphs withnorms less than 2 it will su�
e to show that R± is one-dimensional, i.e. anyplanar 0-tangle whose internal dis
s are all labelled by ξ is in fa
t a s
alarmultipe of the identity. The relation ν = 0 goes a long way to proving thatbut for E8 we will have to work somewhat harder.The sour
e of planar algebras Q whi
h are to 
ontain ξ as above will bethe planar algebras of bipartite graphs 
onstru
ted in [?℄. In fa
t to obtainthe E6 planar algebra we will use the bipartite graph E6 and similarly for
E8. Thus our �rst task is to de
ompose the planar algebra of a bipartitegraph as an orthogonal dire
t sum of TL-modules. Note that we showedin [?℄ that these planar algebras do support a spheri
ally invariant positivede�nite inner produ
t so they are Hilbert TL-modules by ??. We do this inea
h 
ase separately. We use q and δ as above. Choose a bipartite stru
ture33



U+∪U− on E6 as in [?℄. Let PE6 be the planar algebra of the bipartite graph
E6 with respe
t to the spin ve
tor whi
h is the Perron-Frobenius eigenve
tor
µ = (µa) for the adja
en
y matrix of E6 normalized so that ∑

a∈U+

µ4
a = 1.By [?℄, PE6 has spheri
ally invariant positive de�nite partition fun
tion so itbe
omes a Hilbert TL-module by ??.Theorem 8.2 Let µ = q5 + q−5. Then as a TL-module PE6 
ontains theorthogonal dire
t sum of Hδ ,Hµ,H1,H2,−1,H3,e

2πi
3 and H3,e−

2πi
3 (whi
h allexist), ea
h with multipli
ity one, and no other TL-modules of lowest weight

3 or less.Proof. The algebras PE6

± have bases of proje
tions pa whi
h are the loops oflength 0 starting and ending at the verti
es of U±. Let Λ be the (0, 1) matrixwhose rows are indexed by the verti
es of U+ and 
olumns are indexed bythe verti
es of U− with a 1 in the (i, j) position i� i is 
onne
ted to j in E6.A

ording to the planar stru
ture on PE6 the matrix Λ is the matrixof the linear map σ+ : PE6

+ → PE6

− with respe
t to the orthonormal bases
µ−2
a pa of PE6

± . The eigenvalues of ΛtΛ are 1, δ2, µ2 with µ = q5 + q−5 = δ−1.The one dimensional subspa
es spanned in PE6

+ by an orthonormal basisof eigenve
tors for ΛtΛ are invariant under ATL+ so by ?? they generateorthogonal TL-submodules H1,Hδ and Hµ of PE6 .The very existen
e of the lowest weight ve
tors inside a Hilbert TL-module implies immediately that the relevant irredu
ible Hilbert TL-moduleexists. This will apply to all the irredu
ible modules we �nd so we point itout here and refrain from mentioning it again in this theorem or the next.The Bratteli diagram of PE6 (for one 
hoi
e of the bipartite stru
ture) isbelow.So dimPE6

± = 3, dimPE6

1 = 5, dimPE6

2 = 16 and dimPE6

3 = 53. Now
dimHδ

1 + dimHµ
1 + dimH1

1 = 5 so PE6 
ontains no submodules of lowestweight 1. But if W = Hδ
2 ⊕Hµ

2 ⊕H1
2 ⊆ PE6

2 , we have dimW = 2+6+6 = 14by ??. So PE6 
ontains two orthogonal TL-modules of lowest weight 2. To�nd out whi
h they are we need to know the eigenvalues and multipli
ities of
ρ on W⊥ ∩ PE6

2 . But the representations of ρ on W and PE6

2 permute basesquite expli
itly so we may 
ompute eigenvalues simply by 
ounting orbits.By inspe
ting tangles in Th2 we see that ρ has two 2-element orbits and two�xed points on ea
h of Hµ and H1. And ρ is the identity on Hδ. So on W ρhas the eigenvalue 1 with multipli
ity 10 and −1 with multipli
ity 4.34



On the other hand, ρ a
ts on loops on E6 essentially by rotation. Fixedloops starting in U+ are in bije
tion with the edges of the graph and on otherloops ρ a
ts freely. Thus on PE6

2 ρ has eigenvalue 1 with multipli
ity 10 and
−1 with multipli
ity 5. We 
on
lude that ρ = −id on W⊥∩PE6

2 so that PE6
ontains the TL module H2,−1 orthogonal to Hδ ⊕ Hµ ⊕ H1 and no othermodules of lowest weight 2.We now turn to PE6

3 and repeat the 
ount as above. The W = Hδ
3⊕Hµ

3 ⊕
H1

3 ⊕ H2,−1
3 has dimension 5 + 20 + 20 + 6 = 51 by ??. And the rotation

ρ, now of period 3 has, as permutations of bases, 2, 2, 2 and 0 �xed pointson Hδ
3,Hµ

3 ,H1
3 and H2,−1

3 respe
tively. Thus ρ on W has eigenvalue 1 withmultipli
ity 3 + 8 + 8 + 2 = 21 and eigenvalues e± 2πi
3 ea
h with multipli
ity

1+6+6+2 = 15. On loops of length 6, ρ has 5 �xed points as before and 16orbits with 3 elements. Thus on PE6

3 it has eigenvalues 1 with multipli
ity 21and e± 2πi
3 ea
h with multipli
ity 16. Hen
e on W⊥ ∩ PE6

3 , ρ has eigenvalues
e±

2πi
3 ea
h with multipli
ity 1. Choosing an orthononormal basis ofW⊥∩PE6

3of eigenve
tors of ρ we are done. �We now repeat the 
ounting of theorem ?? for E8. So 
hoose a bipar-tite stru
ture U+ ∪ U− on E8 as in [?℄. Let PE8 be the planar algebra ofthe bipartite graph E8 with respe
t to the spin ve
tor whi
h is the Perron-Frobenius eigenve
tor µ = (µa) for the adja
en
y matrix of E8 normalizedso that ∑

a∈U+

µ4
a = 1. By [?℄, PE8 has spheri
ally invariant positive de�nitepartition fun
tion so it be
omes a Hilbert TL-module by ??.Theorem 8.3 Let µ1 = q7 + q−7, µ2 = q11 + q−11 and µ3 = q13 + q−13. Thenas a TL-module PE8 
ontains the orthogonal dire
t sum of

Hδ,Hµ1 ,Hµ2 ,Hµ3 ,H2,−1,H3,e
2πi
3 ,H3,e−

2πi
3 ,H4,−1,H5,e

2πi
5 ,H5,e−

2πi
5 ,H5,e

4πi
5and H5,e−

4πi
5 , ea
h with multipli
ity one, and no other TL-modules of lowestweight 5 or less.To anaylse the lowest weight 0 spa
e observe that ΛtΛ is now a 4 x 4 matrixwith δ2 = (q + q−1)2 as largest eigenvalue. Now 7, 11 and 13 are all primeto 60 and µ1 = q7 + q−7, µ2 = q11 + q−11 and µ3 = q13 + q−13 are all distin
twith positive real part. So the eigenvalues of ΛtΛ are δ, µ1, µ2 and µ3. Di-agonalising σ−σ+ as before we see that PE8 
ontains the orthogonal dire
tsum of Hδ ,Hµ1 ,Hµ2 and Hµ3 . The dimensions of the Hδ

k,Hµ1

k ,H
µ2

k and Hµ3

k ,for the relevant valuse of k, as well as the other TL-modules we will meet inthis proof, are all the same as their values for generi
 δ by theorem ??.From the Bratteli diagram for PE8 or by any other means of 
ountingloops we have dimPE8

1 = 7, dimPE8

2 = 21, dimPE8

3 = 73, dimPE8

4 = 269 and
dimPE8

5 = 1022. 35



As in the previous 
ase this means there are no TL-modules of lowestweight 1. The 
ontribution of Hδ ,Hµ1 ,Hµ2 and Hµ3 to dimPE8

2 is 2 + 6 +
6 +6 = 20 so PE8 
ontains a single TL-module of lowest weight 2. Countingorbits as in ?? we 
on
lude that this module is H2,−1. Thus the TL-modulesof lowest weight less than 3 span a subspa
e Wof dimension 5+20+20+20+
6 = 71 in the 73-dimensional spa
e PE8

3 . To �nd out whi
h two irredu
ible
TL-modules span the orthogonal 
omplement of W we 
ount multipli
itiesof the eigenvalues of ρ (with ρ3 = 1) as before. On Hδ

3 there are two �xedpoints and on ea
h of the Hµ
3 there are two �xed points. On H2,−1

3 thereare no �xed points. So the multipli
ity of 1 is the total number of orbits is
3 + 8 + 8 + 8 + 2 = 29 and ea
h of e± 2πi

3 has multipli
ity the total number oforbits of size 3 whi
h is 1 + 6 + 6 + 6 + 2 = 21. On loops of length 6 on E6there are 7 �xed points as usual and therefore ea
h of e± 2πi
3 has multipli
ityone on the orthogonal 
omplement of W . Diagonalising ρ shows that PE6
ontains H3,e

2πi
3 ⊕H3,e−

2πi
3 .In the 
ase of lowest weight 4, the multipli
ities are more tri
ky to 
om-pute be
ause 4 is not prime. We only sket
h the argument be
ause ourmain results need only the existen
e of single TL-module of lowest weightfour, whi
h 
an be obtained simply via 
ounting. Indeed the subspa
e

W ⊆ PE6

4 spanned by TL-modules of lowest weight less than 4 has dimension
14+70+70+70+28+8+8 = 268 whi
h is one less than dimPE8

4 . We leaveit to the reader to 
he
k that the multipli
ities of 1, i,−i are the same on
W as on loops on E6 starting in U+. The only subtle point is that althoughthere are no �xed points for ρ2 on annular (2, 4) tangles there are tanglessu
h that, in V 2,−1

4 , are sent by ρ2 to −1 times themselves.Finally we ta
kle the 
ase of lowest weight 5. The spa
e W de�ned asabove has dimension 42 + 252 + 252 + 252 + 120 + 45 + 45 + 10 = 1018. Butnow the multipli
ity 
ount is very simple sin
e 5 is prime and we only haveto 
ount �xed points. Here is the 
ount on W , obtained simply by lookingat tangles: Number of �xed points for ρ (ρ5 = 1)
Hδ Hµ H2,−1 He±

2πi
3 H4,−1 Loops on E8

2 2 (times 3) 0 0 (times 2) 0 7Number of orbits of order 5 for ρ (ρ5 = 1)
8 50 (times 3) 24 9 (times 2) 2 203Thus the multipli
ity of ea
h of the primitive �fth roots of unity on W is

8+3× 50+24+9× 2+2 = 202. So ea
h primitive �fth root of unity o

urswith multipli
ity 1 in W⊥ ∩ PE8

5 and by diagonalising ρ we are done. �We will need the following slight addition to the previous results whi
h36



takes into a

ount the intera
tion of the TL-module stru
ture of a C∗-planaralgbebra with the ∗-stru
ture.Proposition 8.4 Let P be a C∗-planar algbebra with spheri
ally invariantpositive de�nite partition fun
tion. The linear span of all irredu
ible TL-modules isomorphi
 to a given one is ∗-invariant. In parti
ular a TL-moduleo

uring in P with multipli
ity one 
ontains a self-adjoint non-zero lowestweight ve
tor.Proof. The involution ∗ is a 
onjugate-linear isometry of P whi
h 
learlypreserves the subspa
e Wk (of lemma ??)of the TL-module P . For k > 0,ea
h TL-module whi
h is the linear span of all irredu
ible TL-modules iso-morphi
 to a given one, is generated by the eigenspa
e of ρ on the orthogonal
omplement of Wk. The assertion of the proposition now follows from thesimple relation ρ(x)∗ = ρ−1(x∗). �To give the �rst and simplest of our proofs of the existen
e of E6 and
E8 planar algebras/subfa
tors, we begin by re
alling the notion of biunitaryfrom [?℄.De�nition 8.5 If P is a C∗-planar algebra, a biunitary U ∈ P is a unitaryelement of P2 su
h that if W = U−1 then the following two equations hold:andGiven a biunitary U we adopt the following 
onvention for making 
er-tain tangles in whi
h the strings are allowed to 
ross into a planar tangle inthe usual sense. (Note that we are using the shading to de�ne lo
al stringorientation in this paper so that a single arrow on a string in this paper
orresponds to two in [?℄.) Suppose T is a tangle, labelled or not, 
ontain-ing 
ertain privileged strings whi
h are oriented and are allowed to 
ross(transversally) the other strings of the tangle but not themselves. Shade theregions of T − {strings of T} with a shading 
onsistent with that near theboundary dis
s. Then make T into a tangle by repla
ing the 
rossings bylabelled dis
s a

ording to the diagram below:37



Remark 8.6 It was observed in [?℄ that if one has a C∗-planar algebra Pwith a biunitary U then the (graded) subspa
e PU of P 
onsisting of allelements R for whi
h there is a Q related as below forms a planar subalgebraof P .Proposition 8.7 Consider the C∗-planar algebra TL for 0 < δ ≤ 2 andsuppose A ∈ C is su
h that δ = −A2 − A−2. Then the element
U = AE1 + A−1id is a biunitary.Proof. Observe that A is ne
essarily a root of unity and the inverse of U is
Aid+ A−1E1. The 
on
lusion follows by simple pi
tures. �Here is a pi
ture of this U :De�nition 8.8 If P is a C∗-planar algebra and U a biunitary in P de�ne,for ea
h k the transfer matrix T ∈ APk to be the annular tangle in whi
hea
h internal boundary point i is 
onne
ted by a string straight to externalboundary point i+1 and there is a single oriented string whi
h is a homolog-i
ally non-trivial 
ir
le going round the annulus in the 
lo
kwise dire
tion. Tis illustrated for k = 4 below. Note that for k = 0 the T 's are the tangles σ±.The tangle T for k = 4Remark 8.9 Theorem 2.11.8 of [?℄ may be interpreted as saying that the
PU of remark ?? is the eigenspa
e of largest eigenvalue (= δ2) of T ∗T .Lemma 8.10 With U as in ?? and T as above, let n = 12 or 30 and k = 3or 5 respe
tively. Let δ = 2cos π

n
and ω = e±

2πi
k . If ψk,ω is a lowest weightve
tor in a 
opy of V k,ω inside a C∗-planar algebra, then

T (ψk,ω) = zψk,ωwith |z| = δ.Proof. If the 
rossings in T are written as sums of TL elements by ex-panding the U ′s, the fa
t that ψk,ω is in the kernel of all the ǫ's means thatthe 
hoi
e of an �A� or �A−1� term at any of the 
rossing for
es the same
hoi
e at all the other 
rossings. So there are only two nonzero terms in thesum, one having a 
oe�
ient of A2k and the other one A−2k. The two tanglesgiving non-zero 
ontributions di�er by a rotation so we need only 
he
k that
|A2k + ωA−2k| = δ whi
h is easy. � 38



Theorem 8.11 For ea
h of E6 and E8 there are up to isomorphism two non-isomorphi
 C∗-planar algebras P with positive de�nite spheri
ally invariantpartition fun
tion having the given prin
ipal graph. There is a 
onjugatelinear isomorphism between the two.Proof. It is well known that the only possible position for the distin-guished point on the prin
ipal graph is at maximal distan
e from the triplepoint. This follows from the 
orresponden
e with subfa
tors or by 
onsider-ing the redu
tion method of [?℄ by minimal proje
tions 
orresponding to theverti
es of the graph.Note that the set of TL-modules o

uring in P is an invariant and our
onstru
tion will give one 
ontaining ea
h V 3,e±
2πi
3 for E6 and V 3,e±

2πi
5 for

E8. They will thus be mutually non-isomorphi
.The 
onstru
tion is quite simple. Let P be the planar subalgebra of
PE6 (resp. PE8) generated by the eigenve
tor ψ of ρ of eigenvalue e± 2πi

3(resp.e± 2πi
5 ) in PE6

3 (resp. PE8

5 ) whi
h is orthogonal to all TL-submodulesof smaller lowest weight. By ?? we may suppose that ψ = ψ∗ so that Pis a C∗-planar algebra. By ?? and ??, any element of P is an eigenve
torfor T ∗T . But on P± T ∗T is σ±σ∓ and we have seen that the eigenvalue δ2has multipli
ity one. Hen
e P is 
onne
ted. This for
es P to have prin
ipalgraph E6 (resp. E8) be
ause the only other possibilities are A and D whi
h
ould not have an element orthogonal to TL in P3 (resp. P5).We 
ould avoid the use of theorem 2.11.8 of [?℄ by observing that the lefthand side of the �gure in remark ?? gives 7 (resp. 11) non-zero terms when
U is inserted and that these terms, together with the right hand pi
ture with
Q = ψ are pre
isely those of the null ve
tor obtained in lemma ??.Extending the identity on paths 
onjugate linearly to all of PE6 (resp.
PE8) yields the required 
onjugate linear isomorphism of planar algebras. �We would now like to give another, mu
h longer proof of the previousresult. Our reason for giving it is that it uses a method we suspe
t to bequite general and powerful. The idea will be to isolate 
ertain planar relationssatis�ed by the generators of a planar algebra and show that labelled tangles
an be redu
ed using these relations to tangles where the generators appear in
ertain restri
ted 
on�gurations. In parti
ular for tangles without boundarypoints we will show that all o

urren
es of the generator 
an be removed,thereby showing that the planar algebra is 
onne
ted. We will 
arry out theargument only in the more 
ompli
ated 
ase of E8, leaving the E6 
ase asan exer
ise. (In fa
t the D 
ase is extremely easy in this regard as thereare more relations-the 
orank of the matrix of inner produ
ts is a
tually 2.)One small bonus of this method is that the uniqueness of the planar algebra39



stru
tures will be easy to see.For the rest of the se
tion P will denote a C∗-planar algebra with spher-i
ally invariant positive de�nite partition fun
tion and ψ will denote an el-ement whi
h is a lowest weight ve
tor of length one for a 
opy of V 5,ω with
ω = e±

2πi
5 
ontained in P .The idea will be to exploit as mu
h as possible the relation of ?? that theve
tor ν ∈ V 5,ω

6 obtained from ψ is zero. Our ultimate aim is to �nd relationsthat redu
e the number of o

uren
es of dis
s labelled by ψ in the planaralgebra generated by ψ. The main step will be to show that if there are 2su
h dis
s 
onne
ted by 2 or more strings then they 
an be repla
ed by TLelements and a single dis
. To this end we introdu
e the following tangles.De�nition 8.12 Let Qp,q and Rp,q be the planar p-tangles with no 
on-tra
tible 
ir
les and 2 internal dis
s with p + q boundary points ea
h. Theinternal dis
s are 
onne
ted to ea
h other by q strings. The positions of thedistinguished boundary regions are as indi
ated by the ∗'s in the pi
ture below.In the above pi
tures, as in subsequent ones, we adopt the 
onventionthat a string 
ontaining a dotted re
tangle with the natural number n in itrepresents n 
lose parallel 
opies of the string.Note that p + q = 10.The next lemma is an easy 
ase of the arguments to follow but it needsto be treated separately. It shows that any tangle 
ontaining 2 dis
s labelled
ψ 
onne
ted by 9 strings is in fa
t 0.Lemma 8.13 The tangles Q1,9(ψ, ψ) and R1,9(ψ, ψ) obtained by labelling the
2 internal dis
s of Q±

1,9 and Q±
1,9 with ψ are proportional to a tangle with asingle 
opy of Q0,10(ψ, ψ) and R0,10(ψ, ψ) respe
tively.Proof. We shall only 
arry out the argument for one position of ∗ as theother argument is stru
turally identi
al. Isotope Q1,9(ψ, ψ) so that it lookslike the tangle below:Re
ognize inside the dotted 
ir
le one of the terms in the expression for νin ??. One may thus repla
e the interior of the dotted 
ir
le by the 11 otherterms in ν. Nine of these terms give zero be
ause a boundary point on thebottom ψ is 
onne
ted to itself. One term is just a single 
urve joining the40



top and bottom boundary points of the outer dis
 with Q0,10(ψ, ψ) to the leftof it. The other term is −η−1 times the tangle below:After an isotopy and using the fa
t that ρ(ψ) = ωψ we �nd that
(1+η−1ω−1)Q1,9(ψ, ψ) is a multiple of a tangle with a single 
opy ofQ0,10(ψ, ψ).
�Lemma 8.14 The elements Q0,10(ψ, ψ) and R0,10(ψ, ψ), of P+ and P− re-spe
tively, are proportional to ea
h other in P1 with the natural embeddingsof P+ and P− in P1.Proof. There was an asymmetry in the argument of the previous lemma.If we had worked from the left rather than the right we would have 
on
ludedthat Q1,9(ψ, ψ) is a multiple of a 1 tangle with a single 
opy of R0,10(ψ, ψ)and no other internal dis
s. Thus both Q0,10(ψ, ψ) and R0,10(ψ, ψ) are in
P+ ∩ P− and proportional to Q1,9(ψ, ψ). �Lemma 8.15 Let Qp,q(ψ, ψ) and Rp,q(ψ, ψ) be the elements of Pn de�nedby labelling both of the internal dis
s of Qp,q and Rp,q by ψ. Then for q =
1, 2, ...8,if p is odd

Qp,q(ψ, ψ) = −ω−p+1

2 η−
p+1

2 Rp,q(ψ, ψ) +Xand
Rp,q(ψ, ψ) = −ω−p+1

2 η−
p+1

2 ρ(Qp,q(ψ, ψ)) + Yand if p is even,
Qp,q(ψ, ψ) = −ω−p

2 η−
p

2κ−1Rp,q(ψ, ψ) + Zand
Rp,q(ψ, ψ) = −ω−p+2

2 η−
p+2

2 κρ(Qp,q(ψ, ψ)) + Twhere X, Y, Z and T are linear 
ombinations of labelled tangles with 2internal dis
s both labelled with ψ having q + 1 strings 
onne
ting the twointernal dis
s. The 
oe�
ients of individual tangles in X, Y, Z and T do notdepend on the parti
ular planar algebra P .Proof. The argument is stru
turally the same in all 
ases so we only do the
ase when p is odd. Isotope the tangle Qp,q(ψ, ψ) so that it is as below.41



Inside the dotted 
ir
le re
ognise, up to the position of the ∗ of the upperinternal dis
, one of the terms in the formula for the nul ve
tor ν in ??. Thuswe may repla
e the inside of the dotted 
ir
le by the 11 other terms in ν withthe appropriate 
oe�
ients. One of these terms gives the tangle Rp,q(ψ, ψ)with the 
oe�
ient above and the other ones are either 0 be
ause some string
onne
ts ψ to itself or they have q + 1 strings 
onne
ting the two internaldis
s.Now begin with Rp,q(ψ, ψ) and isotope it so it is as below.As before, after rotating the upper internal dis
 
lo
kwise by p−3 stringsone re
ognizes one of the terms in the formula for the nul ve
tor ν. All butone of the other terms give 0 or have q+1 strings 
onne
ting the two internaldis
s. The one remaining term gives −η−p+1

2 ρ(Qp,q) ex
ept that the positionof ∗ is rotated 2 strings in an anti
lo
kwise dire
tion on both internal dis
s.This a

ounts for the total fa
tor ω−p+1

2 . �Let Wp be the subspa
e of Pp spanned by labelled tangles (ψ being theonly label) with at most 2 internal dis
s 
onne
ted by more than 10 − pstrings. Observe that Wp is invariant under the rotation.Corollary 8.16 With notation as above, for 1 < p < 10

ρ(Qp,q(ψ, ψ)) = ωp+1ηp+1Qp,q(ψ, ψ) +Xand
ρ(Rp,q(ψ, ψ)) = ωp+1ηp+1Rp,q(ψ, ψ) +Xwhere X is in Wp.Proof. Just apply the se
ond equation of lemma ?? to the �rst, notingthat tangles of the form X, Y et
. are invariant under the rotation. �Corollary 8.17 With notation as above, for p = 1, 2, 3, 4, 6, 7 and 8, Qp,q(ψ, ψ)and Rp,q(ψ, ψ) are in W.Proof. The 
ase p = 1 is 
overed by lemma ??. For the other values of p weget that, modulo the subspa
e W, Qp,q(ψ, ψ) and Rp,q(ψ, ψ) are eigenve
torsof ρ with eigenvalue ωp+1ηp+1. But sin
e ρ has period p they are zero mod

W unless ωp+1ηp+1 is a pth. root of unity. �We will now deal with the 
ase p = 5 and obtain the same 
on
lusion asin the previous result but only by supposing that P = PE8 and using thedimension and multipli
ity 
ounts in this planar algebra.42



Lemma 8.18 Let P be PE8 and ψ be a unit ve
tor in PE8

5 generating a
opy of V 5,ω whose existen
e is guaranteed by theorem ??. Then for p < 5
Qp,q(ψ, ψ) is in the Temperley Lieb algebra.Proof. Indu
tively apply 
orollary ??. Begin with the fa
t that PE8

+ ∩PE8

− =
Cid to obtain the assertion for p = 0 by lemma ??. The subspa
e W is thenalways 
ontained in TL. �Lemma 8.19 Let P be PE8 and ψ be a unit ve
tor in PE8

5 generating a 
opyof V 5,ω whose existen
e is guaranteed by theorem ??. Then
Q5,5(ψ, ψ) = Aψ + xand
R5,5(ψ, ψ) = Bψ + ywhere A and B are s
alars and x and y are Temperley-Lieb elements.Proof. We will only do the argument for Q, the R 
ase being the same.From the general stru
ture of a Hilbert TL-module we have the orthog-onal de
omposition

PE8

5 = V δ
5 ⊕ Vold ⊕ Vnewwhere V δ are the Temperley Lieb elements, Vold is the linear span of Hilbert

TL-modules of lowest weight less than 5 and Vnew is the interse
tion of thekernels of the ǫi for i = 1, 2, ...10 by 
orollary ??. Note also that V δ
5 , Vold and

Vnew are invariant under the ǫi for all i and the rotation ρ.Write Q5,5(ψ, ψ) = x⊕ y ⊕ z in this orthogonal de
omposition. We �rst
laim that y = 0. For if not there would be an i for whi
h ǫi(y) 6= 0. If i isdi�erent from 5 or 10, ǫi(Q5,5(ψ, ψ)) = 0 whi
h is a 
ontradi
tion. If i is 5 or
10 we apply 
orollary ?? and lemma ?? to obtain

ρ(Qp,q(ψ, ψ)) = x′ ⊕ y ⊕ z′in the orthogonal de
omposition. But ρ(Qp,q(ψ, ψ)) is in the kernel of ǫ5 and
ǫ10 so in these 
ases we 
on
lude y = 0 also.It only remains to show that the z in the above de
omposition is a multipleof ψ. But by ??, Q5,5(ψ, ψ) is an eigenve
tor of the rotation with eigenvalue
ω modulo V δ, and the multipli
ity of this eigenspa
e is 1. �All that remains to prove that the planar algebra Pψ generated by ψ in
PE8 has prin
ipal graph E8 is to show how to redu
e the number of internaldis
s in tangles labelled with ψ. In fa
t using the known restri
tions onprin
ipal graphs we only need to show that dimPψ

± = 1. This would follow43



from ?? ?? and ?? if it was true that any 10-valent planar graph must havetwo verti
es 
onne
ted by more than one edge. And this is obvious for Euler
hara
teristi
 reasons. We prefer to give a more general Euler 
harateristi
argument whi
h will be useful in more 
ases and avoids using �well knownfa
ts� about prin
ipal graphs. We will use tangles in the planar 
olouredoperad P of se
tion 2. Su
h a tangle T will be 
alled 
onne
ted if the subsetof the plane 
onsisting of the strings of T and its internal dis
s is 
onne
ted.Re
all from [?℄ that a region of a tangle is a 
onne
ted 
omponent of the
omplement of the strings and internal dis
s inside the external dis
. A regionwill be 
alled internal if its 
losure does not meet the external boundary dis
of T .Proposition 8.20 If a 
onne
ted k-tangle in P has v internal dis
s, f in-ternal regions and e strings, then
v − e+ f = 1 − 2k.Proof. We follow Euler's argument by observing that 
ontra
ting an internalregion to a single internal dis
 does not 
hange v− e+ f . Nor does it 
hangethe fa
t that the tangle is 
onne
ted. When there are no more internalregions any two internal dis
s must be 
onne
ted by a single string, theregions on both sides of whi
h are not internal. Su
h a pair of dis
s may be
ombined into a single one along the string 
onne
ting themwithout 
hanging

v− e+ f or 
onne
tedness. After all su
h dis
s have been 
ombined there is,by 
onne
tedness, a tangle whi
h is a power of ρ. This has the desired valueof v − e+ f . �Corollary 8.21 If the internal dis
s of a 
onne
ted k-tangle all have 2pboundary points, then
f = 1 +

(p− 1)e− (2p− 1)k

pProof. If we 
ount the boundary points on the internal dis
s we have 
ountedall the strings of the tangle twi
e ex
ept the 2k strings 
onne
ted to theboundary dis
. Thus 2pv = 2e− 2k. With v − e+ f = 1 − 2k this gives theanswer. �Corollary 8.22 Let T be a 
onne
ted tangle satisfying the hypotheses ofthe pre
eding 
orollary. Suppose the boundary of every internal region of T
ontains at least 3 strings. Then
(2p− 3)k ≥ 3p+ (p− 3)e.44



Proof. Ea
h edge whi
h is not atta
hed to the boundary dis
, is in theboundary of at most 2 internal regions so 3f ≤ 2e− 4k. �Theorem 8.23 Let Pψ be the planar subalgebra of PE8 generated by ψ asabove. Then for k < 5 Pψ
k is equal to the Temperley-Lieb subalgebra.Proof. It su�
es to show that any tangle 
ontaining an internal dis
 labelledonly with ψ is a linear 
ombination, modulo the Temperley-Lieb subalgebra,of ones with less internal dis
s labelled only with ψ. By indu
tion we maysuppose the tangle is 
onne
ted. But if the tangle 
ontains any internal dis
slabelled by ψ, e is at least 10 so by ?? with p = 5 there has to be an internalregion with only two strings in its boundary. By ?? and ?? we are through.

�Theorem 8.24 For ea
h ω = e±
2πi
5 there is a unique C∗-planar algebra P(with positive de�nite spheri
ally invariant partition fun
tion) up to planaralgebra isomorphism with δ = 2cos π
30

and dimP5 = 43, with ρ having eigen-value ω on the orthogonal 
omplement of the Temperley-Lieb subalgebra of
P5.Proof. By proposition ?? we may 
hoose the unit ve
tor ψ to be self-adjoint in theorem ??, whi
h means that Pψ is a C∗-planar algbebra. Thedimension of P5 is at least 43 sin
e the dimension of the Temperley-Liebsubalgebra is 42 and ψ is orthogonal to it. But by any 5-tangle all of whoseinternal dis
s have 10 boundary points and having more than one internaldis
 must have at least 18 strings so by ?? there have to be 2 dis
s 
onne
tedby more than one string. By ??,if all internal dis
s are labelled ψ, the numberof strings 
onne
ting the 2 dis
s 
an be in
reased to 5 modulo terms withless internal dis
s. Then by ?? the total number of internal dis
s 
an bede
reased. Thus any 5-tangle labelled only by ψ is a linear 
ombination of
TL-elements and ψ itself, and dimP5 = 43.Now let P satisfy the 
onditions of the theorem. Choose an element ψ ∈
P5 orthogonal to the Temperley Lieb subalgebra with ρ(ψ) = ωψ and ψ = ψ∗(by ??). The prin
ipal graph of P 
an only be E8 and the same is true for theplanar subalgebra of P generated by ψ so these two planar algebras have thesame dimension and thus are equal. Sin
e the partition fun
tion is positivede�nite all the stru
ture 
onstants of the planar algebra are determined byknowledge of the partition fun
tions of planar 0-tangles with all internaldis
s labelled by ψ. These partition fun
tions may be 
omputed by redu
ingthe number of internal dis
s to zero. Any su
h redu
tion that only usedthe relations of ?? involve 
oe�
ients that are determined entirely by the45




oe�
ients of ν in ??. Thus the only possible ambiguity in the partitionfun
tion 
omes from redu
tion of the tangles Q5,5(ψ, ψ) and R5,5(ψ, ψ) aslinear 
ombinations of TL elements and ψ. In fa
t only the Q 
ase needs tobe 
onsidered sin
e, as might have been observed in ??, for p odd, Q5,5(ψ, ψ)may be rotated to be
ome R5,5(ψ, ψ).Observe thatQ5,5(ψ, ψ) = ψ2 so a priori we need to determine 43 unknown
oe�
ients in the expression ψ2 = Aψ + θ where θ is in the Temperley Liebsubalgebra of P5. But note that both ψ and ψ2 are zero when multipliedon the left or right by the elements Ei for i = 1, 2, 3, 4 so by fa
t ??, θ isne
essarily a multiple of the p5 of ?? and ψ2 = Aψ + Bp5. So the wholeplanar algebra stru
ture is determined by the real numbers A and B. Also
p5ψ = ψp5 = ψ be
ause the only basis summand in p5 whi
h gives a non-zeroprodu
t with ψ is the identity. So p5 and ψ linearly span a 2-dimensional
C∗-algebra A of whi
h p5 is the identity. We know that the prin
ipal graphof P is E8 and the partition fun
tion, appropriately normalised, de�nes theMarkov tra
e on P . The weights of the tra
e 
an be found in [?℄. Callthe minimal proje
tions in A q1 and q2. Then they are minimal 
entralproje
tions in P5 so their tra
es τ1 and τ2 
an be read o� from [?℄. Suppose
ψ = xq1 + yq2 for some (real) x and y. Sin
e q1 + q2 = p5 the numbers A and
B are determined by x and y. But ψ2 = x2q1 + y2q2 and ψ is a unit ve
torof tra
e zero so taking the tra
e of these two equations we get

xτ1 + yτ2 = 0and
x2τ1 + y2τ2 = 1.So x2 is determined whi
h gives x up to a sign. On the other hand the ve
tor

ψ was always ambiguous up to a sign. So the arbitrary 
hoi
e x > 0 
ould beimposed from the start and the partition fun
tion is 
ompletely determined.
� We in
lude in appendix ?? some observations 
on
erning the presentationof E6 and E8 as planar algebras.A Appendix:The rotation by one.One of the features of the annular Temperley Lieb diagrams that is absentin the dis
 
ase is that there are diagrams whi
h do not preserve a shadingimposed on the boundary regions. The most obvious su
h tangle is therotation by one in whi
h all strings are through and the i internal boundarypoint is 
onne
ted to the i+ 1th. external one. This is not an honest tangle46



a

ording to our de�nition be
ause in de�nition ?? we used elements fromthe planar operad of [?℄ where we insisted that planar tangles have a 
oherentshading. We explained our reasons for this restri
tion in the introdu
tion to[?℄. But it remains natural to eliminate the shading 
ondition and de�ne anextended notion of planar algebra in whi
h the shading 
ondition, and therequirement that the numbers of boundary points be even, would disappear.Indeed in the paper of Graham and Lehrer the annular TL diagrams have norestri
tions ex
ept planarity. And in fa
t 
onsideration of the rotation by one
auses a major te
hni
al simpli�
ation in our proof of positive de�niteness in??. But rather than extend the whole formalism we shall allow non-shadable
TL diagrams to a
t on algebra elements, and hen
e on the modules V k,ω

m bymaking sure there are unshadable elements a
ting both on the inside and theoutside.We begin with the setup when there are boundary points on the insideand outside of the annuli. So let m be an integer > 0.De�nition A.1 De�ne the annular diagram ρ
1

2 to 
onsist of an annulus with
2m internal and 2m external distinguished boundary points as usual with the
ith. internal point 
onne
ted by a string to the (i+1)th. external one so thatthe strings do not 
ross. The diagram is 
onsidered up to isotopy as usual.It makes sense to 
ompose any annular tangle with ρ 1

2 on the inside orthe outside provided the number of boundary points mat
h up but one willobtain a diagram that is outside ATL. But if the diagram is 
omposed bothon the inside and the outside by an odd power of ρ 1

2 the result will be in
ATL.De�nition A.2 If T is a tangle in AnnTL(m,n) we de�ne
Adρ

1

2 : AnnTL(m,n) → AnnTL(m,n) by Adρ 1

2 (T ) = ρ
1

2T (ρ
1

2 )−1.Proposition A.3 Adρ
1

2 is an algebroid automorphism whi
h is the identityon ATL(m,m).Proof. Clearly ρ 1

2 is a square root of ρ and ρ generates ATL(m,m). �Proposition A.4 Adρ
1

2 de�nes an isometry of ÃTLm,k whi
h 
ommuteswith the a
tion of Z/kZ.Proof. Applying Adρ 1

2 to a tangle does not 
hange the number of throughstrings so Adρ 1

2 a
ts on the quotient ÃTLm,k. �47



Corollary A.5 Adρ
1

2 de�nes an isometry of V k,ω
m sending an element T (ψωk )to Adρ 1

2 (T )(ψωk ).Remark A.6 The period of Adρ 1

2 on ATL(m,n) is at most LCM(2m, 2n).We have also used the rotation by one on the modules V µ
k .De�nition A.7 De�ne Adρ 1

2 : V µ
k → V µ

k on the basis Thk by
Adρ

1

2 (T ) = µ−1ρ
1

2Tσ±.Proposition A.8 Adρ
1

2 is an isometry of period at most 2k.Proof. The (0, 0)-tangle used to 
al
ulate 〈Adρ 1

2 (S), Adρ
1

2 (T )〉 has the samenumber of 
ontra
tible 
ir
les as the tangle for 〈S, T 〉 but 2 more non-
ontra
tible ones. The fa
tors µ−1 
ompensate to give an isometry. �Note that there is no rotation by one on V 0,±
k .B Appendix: Towards a skein theory for E6and E8.Planar algebras provide a framework for knot-theoreti
 skein theory. In theapproa
h pioneered and named by Conway ([?℄), a tangle is mu
h the same aswe have de�ned ex
ept that all the internal dis
s have four boundary pointsand are labelled by under or over 
rossings. For the Alexander-Conway andHOMFLY polynomials the strings of a tangle are oriented and the sense of a
rossing is relative to this orientation. For the Kau�man bra
ket and Kau�-man two-variable polynomials there is no orientation but a shading may beused to give sense to the over and under 
rossings. (In [?℄ we showed how tohandle the HOMFLY polynomial in an orientation-free manner using labelsthat 
ontain triple rather than double points in a knot proje
tion so that allinternal dis
s are labelled with triple points-one may then orient the stringsas the boundaries of oriented shaded regions.) The relevant planar algebrais in all 
ases the quotient of the free planar algebra linearly spanned by alltangles, by relations given by three dimensional isotopy (or sometimes themore restri
tive "regular" isotopy) and 
ertain "skein relations", the �rst ofwhi
h was the relation for the Alexander-Conway polynomial in [?℄. Skeinrelations are interesting if they 
ause major 
ollapse of the free planar al-gebra, espe
ially if the quotient is non-zero but �nite dimensional. In the48



examples dis
ussed above the skein relations 
ollapse tangles with no bound-ary points (i.e. link proje
tions) to a one dimensional spa
e and one thusobtains topologi
al link invariants. In [?℄ we promoted the point of view thatthe Reidemeister moves allow three dimensional isotopy to be thought of asskein relations and we began to investigate planar algebras with more gen-eral Reidemeister-type relations, espe
ially in work with Bis
h-see [?℄ and[?℄. One should think of any planar algebra as a generalised skein theorywhere the 
rossings are repla
ed by some family of generators. Of 
oursethese "
rossings" no longer ne
essarily label dis
s with 4 boundary points.Skein relations will then be linear 
ombinations of tangles labelled by thegenerators. A 
olle
tion of skein relations will be 
onsidered more or lessinteresting a

ording to the level of 
ollapse they 
ause of the free planaralgebra. Probably any set of skein relations 
ausing 
ollapse to �nite dimen-sions(but not to zero) should be 
onsidered interesting. A point of view very
lose to this one has already been vigorously pursued in a slightly di�erentformalism by G. Kuperberg who has obtained some of the most beautifulskein theories beyond the HOMFLY and Kau�man ones - see [?℄.A highly desirable level of skein-theoreti
 understanding of a planar al-gebra P is to have a list of labelled k-tangles whi
h form a basis of Pk, anda set of skein relations whi
h allow an algorithmi
 redu
tion of any labelledtangle to a linear 
ombination of basis ones. The list of tangles should benatural in some sense. Having a minimal number of internal dis
s is probablya useful requirement for basis tangles. In the HOMFLY 
ase su
h a basisis indexed by permutations of a set of k points and the redu
tion algorithmis essentially that used in the He
ke algebra of type An. In the Kau�man(or BMW) 
ase the basis is indexed by all partitions of a set of 2k pointsinto subsets of size 2 and the redu
tion algorithm is essentially that usedto 
al
ulate the Kau�man polynomial. Kuperberg has obtained a beautifuluni�ed skein theory for knot invariants obtained from rank 2 Lie algebras.One may obtain skein-theoreti
 
ontrol of a planar algebra with somewhatless than the knowledge of the previous paragraph. If we are dealing with a
C∗-algebra with positive de�nite partition fun
tion then it su�
es, in prin-
iple, to know an algorithm to 
ompute the partition fun
tion of 0-tangleslabelled with generators and their stars. For then to see if a linear 
ombi-nation x of labelled tangles is zero one 
an simply apply the algorithm toea
h term in x∗x and take the sum. This may be an a

eptable situation butit is not ideal. For instan
e if we look at the Temperley-Lieb algebra when
δ is 2 cos π

n
, the partition fun
tion 
an be 
omputed with the usual formulabut we know that the C∗-planar algebra is obtained by taking the quotientby the relation that pn = 0. Expli
it knowledge of pn has proved 
ru
ial infurther developments of the theory, parti
ularly appli
ations to invariants of49



three-dimensional manifolds.We would like to have su
h a theory for the C∗-planar algebras withprin
ipal graphs E6 and E8 and our diagrammati
 proof of the existen
e ofthese planar algebras represents a step in that dire
tion. The planar algebrasare singly generated by the elements ψ whi
h are almost uniquely de�ned bythe relations saying that ψ is a lowest weight ve
tor for a spe
i�
 TL-module,whi
h may be 
onsidered as skein relations. The all-important relation of?? is then a further skein relation. Let us 
all that relation "nul". Nulwas almost su�
ient to provide an algorithm for redu
ing planar 0-tanglesto s
alar multiples of the identity by immediately redu
ing the number ofinternal labelled dis
s if there is a pair of su
h dis
s 
onne
ted by a string. Infa
t this did not quite work in two ways:�rst, we were for
ed to use knowledgeof a ψ o

urring in a parti
ular planar algebra, and se
ond, we were unableto simplify dire
tly a tangle with two internal dis
s 
onne
ted by a singlestring. However, at the end of the day it did turn out, in the 
ase of E8that the following relations on ψ are su�
ient to algorithmi
ally 
al
ulatethe partition fun
tion of a labelled 0-tangle, where all 
onstants are as in ??and theorem ??:a) ψ ∈ ker(ǫ1) ∩ ker(ǫ2)b) ψ∗ = ψ and 〈ψ, ψ〉 = 1
) ρ(ψ) = ωψd) ∑d
j=0 η

jρj(ε2(ψ)) = κ
∑d

j=0 η
jρj(ε3(ψ))e) ψ2 = Aψ +Bp5Thus the above relations 
an be thought of as a presentation of the E8planar algebra in a C∗ sense.We hope we have motivated two further problems.(i) For ea
h k �nd a list of k-tangles labelled by ψ whi
h give a basis for

Pk.(ii) Find a �nite set of skein relations giving an algorithm for redu
tion of agiven tangle to one in the list of (i).We are a long way from solving problem (i) but we would like to pointout in this regard a way in whi
h E8 is signi�
antly more 
ompli
ated than
E6. We had to work quite hard to obtain relations for E8 whi
h su�
ed to
al
ulate the partition fun
tion of 0 − tangles. It would have been trivialif we 
ould have shown that the tangle Q9,1(ψ, ψ) was in fa
t in the linearspan of tangles with at most one internal dis
 labelled ψ. Nothing we haveshown disallows this possibility but we will see that it is not true, althoughthe 
orresponding statement for E6 is 
orre
t. (So a basis of tangles for50



E6 exists with no strings 
onne
ting the internal labelled dis
s.) We willprove these assertions by a 
ounting argument whi
h will require a littlemore knowledge of dimensions of TL-modules on the one hand and a littlemore skein theoreti
 arguments on the other. We begin with the TL-moduleformulae. Re
all from the proof of theorem that the annular Temperley Liebalgebra ATLk 
ontains two 
opies TLa2k and TLb2k of the ordinary TemperleyLieb algebra TL2k as in theorem ??.Theorem B.1 Suppose that Hk,ω is an irredu
ible Hilbert TL-module of low-est weight k and that dimHk,ω
m =

(
2m

m− k

)
− 1. Then for n ≥ m, as a TLa2nand a TLb2n module Hk,ω

n is a dire
t sum of irredu
ible TL2n-modules V j
2n for

j = 2k, 2k + 2, ..., 2m− 2.Proof. The result will follow from fa
t ?? and the following assertion:"If Hk,ω
n 
ontains neither the trivial representation of TLa2n nor that of TLb2nthen Hk,ω
n+1 
ontains neither the trivial reprsentation of TLa2n+2 nor that of

TLb2n+2."This assertion is not di�
ult. To say that a ve
tor γ is in the trivial rep-resentation of TLa2n+2 is to say that Fi(γ) = 0, and hen
e ǫi(γ) = 0, for
i = 1, 2, .., 2n + 1. Moreover ǫ2n+2(γ) = 0 sin
e some power of ρ appliedto it is in the trivial representation of TLb2n. Thus su
h a γ would be in⋂
i=1,..,2n+2 ker(ǫi) and thus zero sin
e Hk,ω is irredu
ible (see ??).Now let m0 be the smallest integer for whi
h Hk,ω

m0
has dimension lessthan the generi
 value. Then for n > m0 the same is true by fa
t ?? and theredu
tion pro
edure of theorem ??. Thus m = m0 and Hk,ω
m 
ontains neitherthe trivial representation of TLa2m nor that of TLb2m by a dimension 
ount.Thus for n ≥ m the redu
tion pro
ess to previous TLa algebras shows thatthe only TLa modules allowed are those listed, and that they all o

ur.

�Note that in the above theorem δ < 2 so the V j
2n do not ne
essarily havetheir generi
 dimensions.We 
an now prove the assertions made above about minimal tangles forthe E6 and E8 planar algebras.Theorem B.2 The planar algebra P of E6 is linearly spanned by tangles la-belled by a single element in whi
h no two labelled internal dis
s are 
onne
tedby a string.Proof. Just as for E8 it is 
lear that P is generated as a planar algebra by alowest weight ve
tor ψ for the TL-module V 3,ω so the theoremwill follow from51



the assertion that Q5,1(ψ, ψ) (see ??) is in the TL-module generated by ψ.But to see this we need only show that dim(H3,ω
5 )+dim(Hδ

5) = dim(P5). Butsin
e the Coxeter number of E6 is 12, all ordinary irredu
ible Temperley-Liebrepresentations o

urring have their generi
 values. In parti
ular dim(Hδ
5) =

42 and by theorem ?? dim(H3,ω
5 ) =

(
10
2

)
−

(
10
1

)
= 35. And the dimension of

P6 is 77. �Theorem B.3 For E8, with notation as in ??, Q9,1(ψ, ψ) is not in the linearspan of the TL-submodules Hδ and H5,ω.Proof. We know that ψ generates a planar algebra P with prin
ipal graph
E8. The Coxeter number of E8 being 30, all ordinary Temperley-Lieb rep-resentations o

urring have their generi
 values so dim(Hδ

9) = 4862 and
dim(H5,ω

9 ) = 2244 by ??.Thus there is a tangle with at least 2 internal dis
s, labelled ψ whi
h isnot in the linear span of Hδ
9 and H5,ω

9 . In fa
t Q9,1(ψ, ψ) must be su
h atangle sin
e otherwise any tangle with a string 
onne
ting two internal dis
slabelled ψ 
ould be written as a linear 
ombination of su
h tangles withoutstrings 
onne
ting internal dis
s labelled ψ, and any 9-tangle of this form isin H5,ω
9 or Hδ

9. �So, unlike E6, the planar algebra of E8 does not admit a basis of labelledtangles with no strings 
onne
ting internal dis
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