
The annular struture of subfators.Vaughan F.R. Jones ∗5th September 20031 Introdution.A �nite index subfator N of a II1 fatorM is well known to have a "standardinvariant" - two inreasing sequenes of �nite dimensional algebras whihwere �rst de�ned as the ommutants (or entralisers) of M and N in theinreasing tower Mn of extensions of N de�ned indutively by M0 = N ,
M1 = M and Mn+1 = End(Mn) where Mn is onsidered as a right Mn−1module.The planar algebras de�ned in [?℄ grew out of an attempt to solve themassive systems of linear equations de�ning the standard invariant of a sub-fator de�ned by a "ommuting square" - see [?℄. The standard invariantarises as the eigenspae of largest eigenvalue of the transfer matrix T (withfree horizontal boundary onditions) in a ertain statistial mehanial modelwhose Boltzman weights are de�ned by the ommuting square. The planaroperad of [?℄ ats multilinearly on V so as to ommute with T . Hene theoperad ats on the eigenspae of largest eigenvalue whih plaes tight non-linear onstraints on that eigenspae. It was shown in [?℄ that the ensuingation of the planar operad on the standard invariant an be de�ned diretlyfrom the data N ⊆ M itself. The appearane of Popa's seminal paper [?℄made it lear that the planar operad ould be used, in the presene of re�e-tion positivity of the partition funtion, to axiomatise standard invariants ofsubfators. All this material is explained in detail in [?℄.More signi�antly than the axiomatisation has been the totally di�erentpoint of view on subfators a�orded by the planar algebra approah. Theplanar operad is graded by the number of inputs in a planar tangle. Sothe natural order of inreasing omplexity of operations on the standard
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invariant is by the number of inputs. Tangles with no inputs and one outputare the so-alled Temperley-Lieb tangles and, in retrospet, it was the studyof these tangles that led in [?℄ to the �rst breakthrough on subfators. (It wasKau�man who �rst saw the Temperley-Lieb algebra in a purely diagrammatiway in [?℄.) The natural next step in the order of omplexity is to onsidertangles with one input and one output. These are the annular tangles and inthis paper we lay the foundations for the study of this the annular strutureof subfators.The next step up in omplexity will be to onsider systematially tangleswith two inputs, whih give bilinear operations. This will be muh harderthan the study of annular tangles as tangles with up to two inputs generatethe whole operad. In partiular one will see the algebra struture on thestandard invariant whih has been the main tool of study in the orthodoxapproahes of Oneanu([?℄), Popa([?℄) and others. From this perspetiveit is truly remarkable that the annular struture yields any information atall about subfators seen from the orthodox point of view. Indeed, besidesthe algebra struture, the notions of prinipal graph, fusion and onnetionare entirely absent and even the index itself is just a parameter, with noindiation that its size should measure omplexity! Yet we will show hereinthat annular onsiderations alone are enough to give Oneanu's restritionson the prinipal graphs in index less than four and even the onstrution ofthe A − D − E series. Restriitions will also be obtained in index greaterthan 4 by onsidering the generating funtion for the dimensions of the gradedpiees in a planar algebra.The notion that will systematise our study of annular struture is thatof a module over a planar algebra. (In the operadi treatment of assoiativealgebras the notion of "module" over an algebra over an operad atuallyde�nes a bimodule over the assoiative algebra.) Adapting the de�nition of[?℄, a module over a planar algebra will be a graded vetor spae whoseelements an be used as inputs for a single internal dis in a planar tangle,the output being another vetor in the module, as explained in setion 1.By ombining all the internal diss that orrespond to algebra inputs itis natural to think of a module as being a module over an annular ategorywhose morphisms are given by annular planar tangles. A planar algebra willalways be a module over itself. More signi�antly, if a planar algebra Pontains another Q then P is a module over Q and will be deomposable assuh. In partiular any planar algebra ontains the Temperley Lieb planaralgebra TL and may be deomposed. In this paper we will exploit thisdeomposition for the �rst time.There are two preursors to this study. The �rst is [?℄ where the TLategory was ompletely analysed in the ase of a partiular planar algebra2



alled the tensor planar algebra in [?℄. The seond and very impressivepreursor is the paper of Graham and Lehrer [?℄ where all TL modules areobtained in a purely algebrai setting whih inludes the non semisimple ase.We present two main appliations of our tehnique. The �rst is a positiv-ity result for the Poinaré series of a planar algebra, obtained by summingthe generating funtions of the TL-modules ontained in a planar algebra.As a orollary one may obtain ertain restritions on the prinipal graph ofa subfator of index lose to 4 (see [?℄).The seond appliation is to give a uniform method for the onstrutionof the ADE series of subfators of index less than 4. We give two versions ofthe proof, the �rst of whih interprets the vanishing of a ertain determinantas being the �atness of a ertain onnetion in the Oneanu language, or theomputation of the relative ommutants for a ertain ommuting square inthe language of [?℄. This is the �rst onvining vindiation of the power ofplanar algebras for omputing ommuting square invariants-whih was themotivation 10 years ago for the introdution of planar algebras! To avoid alengthy disussion of onnetions and ommuting squares we ast this proofentirely in the language of planar algebras though the reader familiar withommuting squares will have no trouble reognising the origin of the proof.The seond proof is a purely planar algebrai proof whih proeeds by givinga system of "skein" relations on a generator of a planar algebra whih allowone to alulate the partition funtion of any losed tangle. It was shown in[?℄ that the partition funtion ompletely determines the planar algebra if itis re�etion positive. Both the proofs begin by �nding the relevant generatorinside a larger, general planar algebra obtained from the Coxeter graph in[?℄.The results of Graham and Lehrer are ruial to both the above appli-aitons sine they give the linear independene or lak thereof of ertainelements, represented by labelled tangles, in TL-modules. Indeed the resultsare so important that we were ompelled to �nd our own proofs of the rel-evant linear independene. There are two reasons for this. The �rst is thatGraham and Lehrer never expliitly address the issues of positivity. Positiv-ity annot be dedued from the Graham-Lehrer determinants alone and evenif we had just applied their results we would have had to do a large frationof the work anyway. The seond reason is that there are subtle but signif-iant di�erenes in the Graham-Lehrer ontext and our own. They had noreason, for instane, to worry about shading so their TL-modules are slightlydi�erent from ours. And their handling of sesquilinearity, while exemplaryfrom a purely algebrai point of view, requires a little modi�ation to applyto Hilbert spae. Thus in order to have on�dene in our own results wefelt obliged to obtain our own proofs-albeit ones owing a lot to the ideas of3



Graham and Lehrer. But even our own proofs are not quite self-ontained asthey use speialisations of the parameters to values ontained in [?℄ and [?℄.2 Notation.Let P be the planar oloured operad de�ned in [?℄. By de�nition a planaralgebra (or general planar algebra, we will not make the distintion here) isan algebra over this operad, i.e. a graded vetor spae P = (P±
0 , Pn, n > 0)together with multilinear maps among the Pk's indexed by the elements of P .The multilinear maps are subjet to a single ompatibility property de�nedin [?℄.De�nition 2.1 An annular tangle T will be a tangle in P with the hoie of adistinguished internal dis. The region in the plane between the distinguishedinternal dis and the outside boundary dis will be alled the interior of thetangle. T will be alled an annular (m, k)-tangle if it is an m-tangle whosedistinguished internal dis has 2k boundary points. In ase m or k is zero itis replaed with ± as usual.De�nition 2.2 (Left) module over a planar algebra.If P = (P±

0 , Pn, n > 0) is a planar algebra, a module over P , or P −
module will be a graded vetor spae V = (V ±

0 , Vn, n > 0) with an ation of
P . That is to say, given an annular (m, k)-tangle T in P with distinguished("V input") internal dis D1 with 2k boundary points and other ("P input")internal diss Dp, p = 2, ...n with 2kp boundary points, there is a linear map
ZT : Vk⊗ (⊗n

p=2Pkp) → Vm. ZT satisi�es the same ompatibility ondition forgluing of tangles as P itself where we note that the output of a tangle with a
V input may be used as input into the distinguished internal dis of anothertangle, and elements of P as inputs into the non-distinguished diss.Comments. (i) This de�nition of P -module is preisely the generalisationto the oloured setting of the de�nition of module over an algebra over anoperad found in [?℄.(ii) A planar algebra is always a module over itself. It will be onsideredto be the trivial module.(iii) Any relation (linear ombination of labelled planar tangles) that holdsin P will hold in V . For instane if P is of modulus δ in the sense that alosed irle in a tangle an be removed by multiplying by δ, the same willbe true for the tangle applied to an input in V . This is a onsequene of theompatibility ondition. 4



(iv) The notions of submodule, quotient, irreduibility, indeomposabilityand diret sum of P -modules are obvious.There is another way to approah P -modules whih is more in the monadispirit of [?℄. If P is a planar algebra we de�ne the assoiated annular ategory
AnnP to have two objets ± for k = 0, one objet for eah k > 0, and whosemorphisms are annular labelled tangles in the sense of [?℄ , with labelling setall of P . Given an annular (m, k)-tangle T and an annular (k, n)-tangle S,
TS is the annular (m,n)-tangle obtained by identifying the inside boundaryof T with the outside boundary of S so that the 2k distinguished boundarypoints of eah oinide, as do the distinguished initial regions, then removingthe ommon boundary (and smoothing the strings if neessary). Let FAPbe the linearization of AnnP - it has the same objets but the set of mor-phisms from objet k1 to objet k2 is the vetor spae having as a basis themorphisms in AnnP from k1 to k2. Composition of morphisms in FAP isby linear extension of omposition in AnnP . Let D be a ontratible dis inthe interior of an annular (m,n)-tangle T whih intersets T in an ordinary
k−tangle, k ≥ 0. De�ne a subspae R(D) of FAP as follows: one T is la-belled outside D it determines a linear map ΦT from the universal presentingalgebra for P to FAP by insertion of labelled tangles. Set R(D) to be thelinear span of all ΦT (ker) where ker is the kernel of the universal presentingmap for P and all labellings of T outside D are onsidered.Proposition 2.3 Composition in FAP passes to the quotient by the sub-spae spanned by the R(D) as D runs over all diss as above.Proof. Composing any tangle with one of the form ΦT (x) for x ∈ kergives another suh tangle. �De�nition 2.4 The annular algebroid AP = {AP (m,n)} (with m or nbeing ± instead of zero as usual) is the quotient of FAP by R(D) de�ned bythe previous lemma.In other words, AP is the quotient of the universal annular algebroid of
P by all planar relations. Thus for instane if P has modulus δ in the sensethat losed irles ontribute a multipliative fator δ, the same will be truefor losed ontratible irles in AP .The notions of module over AP and module over P as above are the same.Given a P -module V de�ne an ation of FAP on V as follows. Givena labelled annular tangle T , onsider the subjaent unlabelled tangle as inde�nition 2.2. Use the labels of T as P -inputs to obtain a linear map from
V to itself. The ompatibility ondition for gluing V diss shows that V5



beomes a (left) module over FAP . Note (iii) above shows that this ationpasses to AP . Conversely, given a module V over AP , the multilinear mapsrequired by the de�nition of P -module are obtained by labelling the interiordiss of an annular tangle with elements of P and applying the resultingelement of FAP to a vetor in V . One has to hek that these multilinearmaps preserve omposition of tangles. If the omposition involves an annularboundary dis, use the fat that V is a FAP -module. If the ompositioninvolves an interior dis, the required identity refers only to objets withina ontratible dis in the interior of the annular tangle, so the identity holdssine V is an AP module and not just a FAP module. Altogether, thisproves the following:Theorem 2.5 The identity map V → V de�nes an equivalene of ategoriesbetween P modules in the sense of de�nition 2.2 and left modules over thealgebroid AP .Annular tangles with the same number of boundary points inside and outgive an algebra whih will play an important role so we make the following.De�nition 2.6 With AP (m,n) as above, let APm be the algebra AP (m,m)for eah positive integer m, and AP± to be the algebras spanned by annulartangles with no boundary points, with the regions near the boundaries shaded(+) or unshaded (-) aording to the sign.If we apply this proedure to the Temperly-Lieb planar algebra TL(δ) for
δ a salar, we obtain the following:For m,n ≥ 0 let AnnTL(m,n) be the set of all annular tangles hav-ing an internal dis with 2n boundary points and and an external diswith 2m boundary points, and no ontratible irular strings. Elementsof AnnTL(m,n) de�ne elements of ATL(m,n) by passing to the quotient of
FATL. The objets of ATL are + and − for m = 0 and sets of 2m pointswhen m > 0. It is easy to hek that morphisms in ATL(δ) between mand n points are linear ombinations of elements of AnnTL(m,n), omposedin the obvious way. In partiular the algebra ATLm(δ) has as a basis theset of annular tangles with no ontratible irles, multipliation being om-position of tangles and removal of ontratible irles, eah one ounting amultipliative fator of δ.It will be important to allow non-ontraible irular strings-ones thatare not homologially trivial in the annulus. Their most obvious e�et atthis stage is to make eah algebra ATLm in�nite dimensional. But only just,as the next disussion shows. 6



De�nition 2.7 A through string in an annular tangle will be one whih on-nets the inside and outside boundaries. AnnTL(m,n)t will denote the setof tangles in AnnTL(m,n) with t through strings.The number of through strings does not inrease under omposition so thelinear span of AnnTL(m,m)r for r ≤ t is an ideal in ATLm. The quotient bythis ideal for t = 0 is �nite dimensional. Its dimension was already alulatedin [?℄.For future referene we de�ne ertain elements of AnnTL. Of ourse theyare de�ned also as elements of AP for any planar algebra P .De�nition 2.8 Let m ≥ 0 be given. We de�ne elements ǫi, εi, Fi, σ± andthe rotation ρ as follows:(i)For 1 ≤ i ≤ 2m, ǫi is the annular (m−1, m)-tangle with 2m− 2 throughstrings and the ith. internal boundary point onneted to the(i+1)th. (mod 2m). The �rst internal and external boundary points are on-neted whenever possible but when i = 1 or 2m the third internal boundarypoint is onneted to the �rst external one.When m = 1, for ǫ1 the two internal boundary points are onneted bya string having the shaded region between it and the internal boundary andfor ǫ2 the string has the shaded region between it and the external boundary.To avoid onfusion in this and future ases when m = 1 we draw ǫ1 and ǫ2below.(Remember that the boundary region marked * is always unshaded.)
ǫ1 ǫ2(ii)For 1 ≤ i ≤ 2m+2, εi is the annular (m+1, m)-tangle with 2m throughstrings and the ith. external boundary point onneted to the

(i+ 1)th.(mod2m + 2). The �rst internal and external boundary points areonneted whenever possible but when i = 1 or 2m + 2 the third externalboundary point is onneted to the �rst internal one.When m = 0, for ε1 the two external boundary points are onneted by astring having the shaded region between it and the external boundary and for
ε2 the string has the shaded region between it and the internal boundary.(iii) For 1 ≤ i ≤ 2m let Fi be the annular (m,m)-tangle with 2m − 2through strings onneting the jth. internal boundary point to the jth. exter-nal one exept when j = i and j = i+ 1 (mod 2m).When m = 1 we adopt onventions as for ǫ and ε. We depit F1 and F2below. 7



(iv)Let ρ be the annular (m,m)-tangle with 2m through strings with the�rst internal boundary point onneted to the third external one.(v)Let σ± be the annular (±,∓) tangles with opposite inside and outsideshadings near the boundaries and a single homologially non-trivial irleinside the annulus.Now return to the ase of a general planar algebra P . To generalise thenotion of through strings we introdue the following.De�nition 2.9 If T is an annular (m,n) tangle (an m-tangle with a dis-tinguished internal dis having 2n boundary points), the rank of T is theminimum, over all embedded irles C inside the annulus whih are homo-logially non trivial in the annulus and do not meet the internal diss, of thenumber of intersetion points of C with the strings of TFor instane if T has no internal diss besides the distinguished one, itde�nes an element of ATL(m,n) and the rank of T is just the number ofthrough strings.Remark. If an annular (m,n) tangle T has rank 2r it may be written asa omposition T1T2 where T1 is an (m, r) tangle and T2 is an (r, n) tangle.Lemma 2.10 If P is a planar algebra, the linear span in the algebra APmof all labelled annular (m,m)-tangles of rank ≤ r is a two-sided ideal.We do not expet the quotient of APm by the ideal of the previous lemmato be �nite dimensional in general though there are ases di�erent from Tem-perley Lieb where it is.We onlude this setion with a ouple of generalities on P -modules. Theterms irreduible and indeomposable have their obvious meanings.Lemma 2.11 Let V = (Vk) be a P -module. Then V is indeomposable i�
Vk is an indeomposable APk module for eah k.Proof. Suppose V is indeomposable but that Vk has a proper APk module
W for some k. Then applying AP to W one obtains a sub P -module X of
V and Xk ⊆ W sine returning to Vk from Xm is the same as applying anelement of APk. The onverse is obvious. �De�nition 2.12 The weight wt(V ) of a P -module V is the smallest k forwhih Vk is non-zero. (If V+ or V− is non-zero we say V has weight zero.)Elements of Vwt(V ) will be alled lowest weight vetors. The set of all lowestweight vetors is an APwt(V )-module whih we will all the lowest weightmodule. 8



De�nition 2.13 The dimension of a P -module V is the formal power series
ΦV (z) =

1

2
dim(V+ ⊕ V−) +

∞∑

k=1

dim(Vk)z
kObserve that the dimension is additive under the diret sum of two P -modules.We will not onern ourselves here with further purely algebrai proper-ties. We are espeially interested in subfators, where positivity holds.3 Hilbert P -modules.A C∗-planar algebra P is one for whih eah Pk is a �nite dimensional C∗-algebra with * ompatible with the planar algebra struture as in [?℄. The*-algebra struture on P indues ∗-struture on AP as follows. De�ne aninvolution ∗ from annular (m, k)-tangles to (k,m)-tangles by re�etion in airle half way between the inner and outer boundaries. (The initial unshadedregions around all diss are the images under the re�etion of the initialunshaded regions before re�etion, as in the de�nition of a ∗-planar algebrain [?℄.) If P is a C∗-planar algebra this de�nes an antilinear involution ∗ on

FAP by taking the ∗ of the unlabelled tangle subjaent to a labelled tangle T ,replaing the labels of T by their ∗'s and extending by antilinearity. Sine Pis a planar ∗-algebra, all the subspaes R(D) are preserved under ∗ on FAP ,so ∗ passes to an antilinear involution on the algebroid AP . In partiular allthe APk are ∗-algebras.De�nition 3.1 Let P be a C∗-planar algebra. A P -module V will be alleda Hilbert P -module if eah Vk is a �nite dimensional Hilbert spae with innerprodut 〈, 〉 satisfying
〈av, w〉 = 〈v, a∗w〉for all v, w in V and a in AP (in the graded sense).Comments. (i)A P -submodule of a Hilbert P -module is a Hilbert P -module.(ii)The orthogonal omplement (in the graded sense) of a submodule of a

P -submodule is a P -submodule so that indeomposability and irreduibilityare the same for Hilbert P -modules.Reall from [?℄ that a C∗-planar algebra P is said to be spherial if thereare linear funtionals Z : P±
0 → C whih together de�ne a spherially invari-ant funtion on labelled 0-tangles. The partition funtion Z is also required9



to be positive de�nite in the sense that 〈x, y〉 = Z(xcy
∗) is a positive de�niteHermitian form on eah Pk where xcy denotes the omplete ontration oftangles x and y, i.e. the labelled 0-tangle illustrated below with 2 internal

k-diss and 2k strings onneting them, with the initial regions of eah dis inthe same onneted omponent of the plane minus the tangle, with x in onedis and y in the other, as shown below. It does not matter how the stringsonnet the two diss, by spherial invariane. (Z(xcy) would be trace(xy)in the terminology of [?℄.)
xcyA spherial C∗-planar algebra always admits a Hilbert P -module, namelyitself, as follows.Proposition 3.2 If P is a spherial C∗-planar algebra then the inner prod-ut 〈x, y〉 = Z(xcy

∗) makes P into a Hilbert P -module.Proof. The ation of AP on P is that of omposition of tangles. All thatneeds to be shown is the formula
〈av, w〉 = 〈v, a∗w〉for all v, w in P and a in AP . We may assume that v, w, and a are all labelledtangles so the equation is Z((av)cw

∗) = Z(vc(a
∗w)∗). In fat the two tangles

(av)cw
∗ and vc(a∗w)∗ are isotopi in the two-sphere. Observe as a hek thatthe labels in the diss are orretly starred and unstarred on both sides ofthe equation. Also if we number the boundary regions of the tangles startingwith the distinguished one we see that they are numbered the same on theleft and right of the equation. (Note that taking the * of an annular tanglereverses the order of the regions of an internal dis but preserves the order ofthe internal and external boundary diss.) Now imagine a ylinder with dissat either end, one ontaining v and one ontaining w∗. On the surfae of theylinder onnet v and w with a. Isotoping the surfae of the ylinder (minusa point on the boundary between a and w) to the plane we see (av)cw

∗ andtaking the point at in�nity to be on the boundary between v and w we see
vc(a

∗w)∗. By spherial invariane we are through. �In the operad theory of assoiative algebras a module over an algebra
A over the relevant operad is equivalent to a bimodule over A. This is thetrivial bimodule. So we will think of the Hilbert P -module P as being thetrivial module. The trivial module may or may not be irreduible. It may10



be irreduible even when dim(P±
0 ) > 1 At �rst sight this ontradits lemma?? but remember that σ± determine maps between P±

0 .We reord some trivial properties of the elements ǫi, εi, Fi, σ± and therotation ρ in a Hilbert P -module.For the rest of this setion,unless otherwise stated, planar algebras willbe C∗ ones and P -module will mean Hilbert P -module.Proposition 3.3 The following hold in ATL(δ):(i) ǫ∗i = εi(ii) ǫ∗i ǫi = Fi and ǫiǫ∗i = δid(iii) ρ is unitary, i.e. ρρ∗ = ρ∗ρ = 1(iv) F ∗
i = Fi and if fi = δ−1Fi, fi is a projetion, i.e. f2

i = fi.(v) (σ+)∗ = σ−.Lemma 3.4 Let V be a P -module. Suppose W ⊆ Vk is an irreduible APk-submodule of Vk for some k. Then AP (W ) is an irreduible P -submodule of
V . Proof. By ?? it su�es to show that AP (W )m is an irreduible APm-module for eah m. But if v and w are non-zero elements of AP (W )mwith APm(v) orthogonal to APm(w) then write v = av′ and w = bw′ for
a, b ∈ AP (m, k) and v′, w′ ∈ W . Then a∗v = a∗av′ and b∗w = b∗bw′ arenon-zero elements of W with APk(a∗v) orthogonal to APk(a∗w). �Lemma 3.5 Let U1 and U2 be orthogonal APk-invariant subspaes of Vk fora P -module V . Then AP (U1) is orthogonal to AP (U2).Proof. This follows immediately from invariane of 〈, 〉. �Remark 3.6 Lemmas ?? and ?? give a anonial deomposition of a P -module V as a ountable orthogonal sum of irreduibles. First deompose
Vwt(V ) into an orthogonal diret sum of irreduible APwt(V )-modules. Eahirreduible summand Wi will de�ne a P -submodule AP (Wi) and the AP (Wi)are mutually orthogonal. The orthogonal omplement of the AP (Wi) has ahigher weight than V so one may ontinue the proess.Conversely, given a sequene of P -modules V i with limi→∞(wt(V i)) = ∞one may form the ountable orthogonal diret sum of P -modules ⊕iVi.Thus the dimension of a P− module is the ountable sum of the dimen-sions of irreduible modules whose weights tend to in�nity, so the sum offormal power series makes sense. We guess that the dimension of an irre-duible P -module has radius of onvergene at least as big as δ−2 if P hasmodulus δ. 11



Lemma 3.7 Suppose V and W are two P -modules with V irreduible, andthat θ : Vk → Wk is a non-zero APk homomorphism. Then θ extends to aninjetive homomorphism Θ of P -modules.Proof. Sine V is irreduible, for all m, any v ∈ Vm is of the form
av0 for v0 ∈ Vk and a ∈ AP (m, k). Set Θ(v) = a(θ(v0)). To see that
Θ is well de�ned it su�es to hek inner produts with other vetors in
AP (m, k)(Wk). Indeed, suppose av0 = bv0. Then for any w0 ∈ Wk, and any
c ∈ AP ,

〈a(θ(v0)), cw0〉 = 〈c∗a(θ(v0)), w0〉
= 〈θ(c∗av0), w0〉
= 〈θ(c∗bv0), w0〉
= 〈b(θ(v0)), cw0〉.Thus Θ is well de�ned, a P -module homomorphism by onstrution andinjetive sine V is irreduible. �Thus in partiular an irreduible P -module is determined by its lowestweight module. Not all APwt(P )-modules an be lowest weight modules as weshall see. Let ÂPk be the ideal of APk spanned by elements of AnnP (k, k)of rank (see ??) stritly less than 2k.Lemma 3.8 If V is a P -module let Wk be the APk-submodule of Vk spannedby the k-graded piees of all P -submodules of weight < k. Then

W⊥
k =

⋂

a∈ dAPk

ker(a)Proof. (i) Choose w ∈ Wk. By de�nition it is a linear ombination ofelements of the form aw′ with a ∈ AnnP (k,m) for m < k. But then for
v ∈ Vk

〈aw′, v〉 = 〈w′, a∗v〉and a∗ an be written up to a power of δ as the omposition t∗ta∗ for anappropriate AnnTL tangle t. But then ta∗ has rank at most m. So if
v ∈ ker(ta∗), a∗v = 0. Hene w is orthogonal to ⋂

a∈ dAPk
ker(a).(ii)Now suppose v ⊥ Wk and a ∈ ÂPk. Then a is a linear ombination ofelements of the form bc for some c ∈ AnnP (m, k) and b ∈ AnnP (k,m) forsome m < k. For suh a bc and any w ∈ Wk we have 〈bcv, w〉 = 〈v, c∗b∗w〉whih is zero beause b∗w is in Vm and therefore a linear ombination ofvetors in P -submodules of weight < k. �In the speial ase of the Temperley Lieb algebra TL we get the following,where Wk has the same meaning as in the previous lemma.12



Corollary 3.9 If V is a TL-module then W⊥
k =

⋂
i=1,2..,2k ker(ǫi)Proof. The ideal ÂTLk is spanned by Temperley Lieb diagrams with lessthan 2k through strings, eah of whih neessarily fatorises as a produtwith some ǫi. �Corollary 3.10 The lowest weight module of an irreduible P -module ofweight k is an APk

ÂPk
-module.De�nition 3.11 For eah k we de�ne the lowest weight algebra at weight k

LWPk to be the quotient LWPk =
APk

ÂPk
.We see that the job of listing all P -modules breaks down into 2 steps.Step (i) Calulate the algebras LWPk and their irreduible modules.Step (ii) Determine whih LWPk-modules extend to P -modules.The algebra LWPk is usually muh smaller than APk. For instane inthe ase of ATL it is abelian of dimension k (for k > 0) whereas ATLk isin�nite dimensional.We shall now show how to equip AP with a C∗-norm whih an be usedto make it into a C∗-ategory. We �rst need a uniform bound on labelledtangles.Lemma 3.12 Let P be a C∗-planar algebra and V a P -module. Suppose Tis a labelled tangle in AnnP . Then T de�nes a linear map between the �nitedimensional spaes Vk and Vm. We have

||T || ≤ C
∏internal diss of T ||a||where the onstant C depends only on the unlabelled tangle subjaent to Tand the a's are the elements of P labelling the diss (whih have norms sine

P is C∗)Proof. Arrange the tangle so that the inner and outer boundaries areonentri irles entred at the origin with internal radius R0 and externalradius R. Let r denote the distane to the origin. Isotope the tangle so thatthere is a partition R0 < R1 < R2 < · · · < R with only the following threesituations in eah annulus Ai where r runs from Ri to R(i+1):13



(i) There are no internal tangles in Ai and r has no maxima or minimain Ai. In this ase the annular tangle inside Ai is a power of the rotation ρ.(ii) There are no internal tangles in Ai and r has a single loal maximum(minimum) inside Ai. In this ase the annular tangle inside Ai is ǫj (εj).(iii) There is a single k-dis D labelled a inside Ai, and all strings of thetangle inside Ai are intervals of rays from the origin.We see that in any P -module V the linear map de�ned by T fatorizes asa produt of ρ's, ǫ's and maps de�ned by the very simple tangle of situation(iii) above. By ?? we only have to show the norm of a tangle Q in situation(iii) is less than ||a||. This an be ahieved as follows: we may suppose thathalf the strings of Q whih meet the dis D are ray intervals beginning onthe inside boundary of Ai. The map from Pk to AP whih sends x to thethe tangle in Ai with D labelled by x is a ∗-algebra homomorphism so sine
Pk is a C∗-algebra we are through. �We may thus make the following:De�nition 3.13 If P is a C∗-planar algebra and a ∈ AP (n,m) we de�nethe norm of a to be

||a|| = supall P-modules V ||ρ
V
(a)||where ρ

V
(a) is the linear map from Vm to Vn determined by a and V .This makes AP into a C∗-ategory and in partiular all the APk beome

C∗-algebras. They are of type I for ATL but we do not know if they are oftype I in general.4 Fats about the ordinary Temperley-Lieb al-gebra.For the onveniene of the reader let us �rst reall some fats the ordinary(non-annular) Temperley-Lieb algebra and its representations. These fatswill be used in the proofs below and an all be dedued easily from [?℄,[?℄and Kau�man's diagrammati in [?℄.Fix a omplex number δ. The Temperley Lieb algebra TLn on n stringsadmits the following presentation as an algebra:Generators: {Ei : i = 1, 2, .., n− 1} (and an identity, 1).Relations: E2
i = δEi, EiEj = EjEi for |i− j| ≥ 2, EiEi±1Ei = Ei.The algebra an be alternatively de�ned as that having a basis onsisist-ing of all onneted n-tangles with the boundary onveniently deformed to14



a horizontal retangle having the �rst boundary point, by onvention, at thetop left. Then Ei is the tangle with all boundary points exept four on-neted by vertial lines and the i-th. and i+1-th. on the top (resp. bottom)onneted to eah other by a urve lose to the top (resp. bottom) boundary.There is an adjoint operation a → a∗ on TLn de�ned by sesquilinear exten-sion of the operation on tangles whih is re�etion in a horizontal line halfway up the tangle. Alternatively, the operation ∗ is the unique anti-involutionfor whih E∗
i = Ei.Fat 4.1 The dimension of TLn is 1

n+1

(
2n
n

).
TLn an, and will, be identi�ed unitally with the subalgebra of TLn+1alternatively by adding a vertial string to the right of the retangle de�ning

TLn, or by identifying the �rst n− 1 generators of Tn+1 with those of TLn.Fat 4.2 The map x → 1
δ
xEn+1 de�nes an algebra isomorphism of TLn ontothe "orner" subalgebra En+1(TLn+2)En+1.Fat 4.3 TLn is a C∗-algebra, hene semisimple, for δ ∈ R, δ ≥ 2.De�ne the Thebyhev polynomials in δ by Pk+1 = δPk − Pk−1, with

P0 = 0 and P1 = 1 so that if δ = 2 sinh(x) we have
Pk(δ) =

sinh(kx)

sinh(x).Fat 4.4 For δ ≥ 2 let 1− pn denote the identity of the ideal of TLn de�nedalternatively as the linear span of diagrams with at most n−1 through stringsor the linear span of non-empty words on the Ei. Then p1 = 1 and
pn+1 = pn −

Pn
Pn+1

pnEnpn.Fat 4.5 We have p2
n = p∗n = p2

n and pn is the unique non-zero idempotentin TLn for whih pnEi = Eipn = 0 for all i < n.The element pn an thus be de�ned as the linear oe�ient of wordsin the Ei's (or alternatively n-tangles) de�ned by the above formula. Theoe�ients of the individual words do not appear to be known expliitly.Graham and Lehrer in [?℄ obtain expliit formulae at speial values of δ. Animproved knowledge of these oe�ients is desirable but we will need onlythe following very simple ase. 15



Lemma 4.6 For 1 ≤ r ≤ n− 1, the oe�ient of En−1En−2....Er in pn is
(−1)r sinh(rx)

sinh(nx)
.Proof. The only way to obtain the term En−1En−2....En−r in Wenzl'sformula in ?? is to multiply En−1 by the term En−2En−2....En−r in TLn−1.So by indution we are done. �For eah t ≤ n with n−t even we onsider the vetor spae V t

n having as abasis the set V tn of all retangular horizontal Temperley-Lieb (n+t)/2-tangleswith t boundary points on the bottom and n points on the top with all stringsonneted to the bottom boundary points being through strings. V t
n beomesa TLn-module by joining the top of an element of V tn with the bottom of anelement of TLn. Remove any losed irles formed as usual, eah one ountinga multipliative fator of δ. If there are less than t through strings the resultis zero. There is an inner produt on V t

n de�ned as 〈x, y〉 = φ(y∗x) where
φ is the map from TLt to the one dimensional quotient of TLt by the idealspanned by TL tangles with less than t through strings.Fat 4.7 The dimension of V t

n is (
n

n−t
2

)
−

(
n

n−t−2

2

).Fat 4.8 For δ ≥ 2 eah representation V t
n is irreduible and any irreduiblerepresentation of TLn is isomorphi to a V t
n .Fat 4.9 The inner produt is invariant, i.e 〈ax, y〉 = 〈x, a∗y〉 for a ∈ TLnand positive de�nite. It is the unique invariant inner produt on V t

n up to asalar multiple.Proposition 4.10 If δ > 2 and 0 ≤ t < n with n−t even, a representation πof TLn on V ontains V t
n if and only if the restrition of π to En−1(TLn)En−1(on π(En−1)V ) ontains V t

n−2. If π is irreduible, an invariant inner produton V is positive de�nite if and only if it restrits to a positive de�nite oneon π(En−1)V .Proof. Note �rst that by ?? En−1(TLn)En−1 is isomorphi to TL(n− 2)so the assertion makes sense. But it is also lear that the subspae En−1V
t
nis isomorphi as an En−1(TLn)En−1-module to V t

n−2. So the ontainment as-sertion follows by deomposing V and π(En−1)V as TLn and TLn−2-modulesrespetively. The assertion about the inner produts is and immediate on-sequene of ??. �For appendix ?? we will also need some information about the Hilbertspae representations of the ordinary TL algebra when δ = 2cos π
m
and m =16



3, 4, 5, ... For these values of δ the TL-algebra has a largest C∗ quotient whoseBratelli diagram is well known-see [?℄ or [?℄. We will all this quotient TLn,whih is an abuse of notation. The modules V n
t admit quotients whih areHilbert spaes on whih TLn is represented as a C∗-algebra. Continuing theabuse of notation we will all these Hilbert spae representations V t

n .Fat 4.11 If δ = 2cos π
m

with m = 3, 4, 5, ... the TLn modules are uniquelyde�ned up to isomorphism by the onditions:
V t
n = 0 for t < 0 or t > n

V n
n = C for n ≤ m− 2

V m−1
m−1 = 0

V t
n = V t−1

n−1 ⊕ V t+1
n−1 as TLn−1-modules .All suh representations have dimensions less than or equal to their generivalues.This fat is equivalent to the struture of the Bratteli diagram ([?℄).5 The TL-modules for δ > 2.We will use the approah outlined after de�nition ?? to obtain all TL-modules. The �rst step is very easy- the algebras ATLk

ÂTLk

and their irreduiblemodules are determined (for any δ) in the next lemma, for k > 0.Lemma 5.1 For k > 0 the quotient ATLk

ÂTLk

is generated by the rotation ρ, thusits irreduible representations are 1-dimensional and parametrized naturallyby the kth. root of unity by whih ρ ats.Proof. If all strings are through strings a (k, k)-tangle is neessarily apower of ρ.�For the rest of this setion we will suppose δ > 2. This simpli�es thesituation onsiderably. For δ ≤ 2 the quotient of ATLk by the zero through-string ideal is no longer semisimple.To see that eah representation of the previous lemma extends to a TL-module, we begin by onstruting modules of lowest weight k, V k,ω,for ω a
kth. root of unity, quite expliitly in a way very similar to the onstrutionof the non-annular Temperley-Lieb modules in the previous setion.17



De�nition 5.2 Let ÃTLm,k be the quotient of ATLm,k by the subspae spannedby tangles with less than 2k through strings. (So that ÃTLm,k = 0 if m < k.)Sine the number of through strings does not inrease under ompositionof tangles, ÃTLm,k is a TL-module of lowest weight k. One may desribethis TL-module quite expliitly in terms of a basis as follows:For m ≥ k let Thm,k be the set of all ATLm,k tangles with k throughstrings and no losed irular strings. Clearly the images of Thm,k in ÃTLm,kform a basis. We now desribe the ation of ATL on this basis.If T ∈ AnnTL(p,m) and Q ∈ Thm,k onsider the annular (p, k) tangle
TQ. Suppose TQ has c losed irular strings and let T̂Q be TQ from whihthe losed strings have been removed.Then T (Q) is(i) 0 if TQ has less than 2k through strings.(ii) δc T̂Q otherwise.The group Z/kZ ats on ÃTLm,k by internal rotation, freely permutingthe basis Thm,k. This ation ommutes with the ation of ATL. Thus the
TL-module ÃTLm,k splits as a diret sum, over the kth. roots of unity ω, of
TL-modules whih are the eigenspaes for the ation of Z/kZ with eigenvalue
ω. These are the V k,ω with V k,ω

m being the ω-eigensubspae of ÃTLm,k.Proposition 5.3 The dimension of V k,ω
m is (

2m

m− k

) for m ≥ k (and zerofor m < k).Proof. Sine the ation of Z/kZ is free, the dimension of V k,ω
m is dim(ÃTLm,k)/kand it was shown in [?℄ that dim(ÃTLm,k) = k

(
2m
m−k

). �Let C(z) =
1 −

√
1 − 4z

2z
, the generating funtion for the Catalan num-bers.Corollary 5.4 The dimension of the TL-module V k,ω is zk C(z)2k

√
1 − 4z

.Proof. By ?? the generating funtion for dim(V k,ω
m ) is zk ∞∑

r=0

(
2k + 2r

r

)
zr.By [?℄ page 203 this gives the answer above. �For eah k hoose a faithful trae tr on the abelian C∗-algebra ÃTLk,k.Extend tr to all of ATLk,k by omposition with the quotient map. Use tr tode�ne an inner produt on the whole TL-module ÃTLm,k as follows.18



Given S, T ∈ ATLm,k, T ∗S is in ATLk,k so we set
〈S, T 〉 = tr(T ∗S)This inner produt learly satis�es 〈av, w〉 = 〈v, a∗w〉 as in de�nition ??.And the rotation is learly unitary so that the deomposition into the V k,ωis orthogonal. The main result of this setion will be to show that the innerprodut is positive de�nite for δ > 2, whih is not always the ase when

δ ≤ 2.De�nition 5.5 Let ψωk be a vetor in V k,ω
k proportional to ∑k

j=1 ω
−jρj with

〈ψωk , ψωk 〉 = 1 .Observe that ǫiψωk = 0 for i = 1, 2, ...2k. This is beause ǫiψωk is in
V k,ω
k−1 whih is zero.Proposition 5.6 All inner produts in V k,ω are determined by the three for-mulae

ǫiψ
ω
k = 0 for i = 1, 2, ...2k

〈ψωk , ψωk 〉 = 1

ρ(ψωk ) = ωψωkProof. V k,ω is spanned by annular TL-tangles applied to ψωk . When alu-lating the partition funtion of suh an R∗Q the answer will be zero unlessall the strings leaving one ψωk are onneted to the other. If they are not,
R∗Q ontains some ǫi applied to some ψωk . If the two ψωk 's are ompletelyjoined, one may apply some power of ρ so that, after removing losed irles,the tangle R∗Q is exatly that whose partition funtion gives 〈ψωk , ψωk 〉. �Theorem 5.7 For eah k ≥ 1 and for eah kth. root of unity ω, the repre-sentation of ATLk of lemma ?? extends to a representation Γk,ω on V k,ω oflowest weight k, making V k,ω into a Hilbert TL-module.Proof. It su�es to show that 〈, 〉 is positive de�nite on eah V k,ω

m whihwe will do by indution on m as follows.Think of the annulus for annular (m,m)-tangles as two onentri ir-les with distinguished boundary points evenly spaed, and draw a straightline between inner and outer boundaries half way between the 2mth. and�rst boundary points. The subalgebra Am of ATLm spanned by annulartangles never rossing this straight line is learly isomorphi to the usualTemperley-Lieb algebra TL2m, with elements F1, F2, .., F2m−1 of de�nition19



?? orresponding to the usual TL generators E1, ..., E2m−1. The exat asser-tion we will prove by indution is the following:Assertion: As aAm-module, V k,ω
m is isomorphi to ⊕

j=2k,2k+2,2k+4,...,2m V
j
2m,the sum being orthogonal with respet to the positive de�nite form 〈, 〉.The ase k = m is overed by the de�nition, so suppose the assertion istrue for m − 1 whih is ≥ k. Identify Am−1 with F2m−1AmF2m−1 as in ??.Pitures show that the map x → ε2m−1(x)/δ is an isometry (for 〈, 〉) of V k,ω

m−1onto the subspae Fm−1V
k,ω
m whih intertwines the ations of Am−1 and Am.Proposition ?? shows that V k,ω

m ontains V j
2m for j = 2k, 2k + 2, ...2m− 2.By ?? V k,ω

m ontains a submodule whose dimension is a telesoping sumadding up to (
2m
m−k

)
− 1. Sine dimV k,ω

m =
(

2m
m−k

) we onlude that V k,ω
montains eah V k

m exatly one and sine TLm is a C∗-algebra, that the sum⊕
j=2k,2k+2,2k+4,...,2m−2 V

j
2m is orthogonal. Thus we will be done if we an showthat there is a vetor orthogonal to ⊕

j=2k,2k+2,2k+4,...,2m−2 V
j

2m whose innerprodut with itself is stritly positive.The range of the idempotent p2m ∈ Am will be orthogonal to
⊕j=2k,2k+2,2k+4,...,2m−2V

j
2m sine 〈, 〉 is invariant and p2m = p∗2m. The onlyvetors v of V k,ω

m obtained by applying elements of Thm,k to ψωk for whih
p2m(v) 6= 0 are proportional to the vetor ξ depited below. Note that wehave not starred an initial region on the internal boundary. The loation ofsuh a ∗ would depend on the parity of m− k and any hoie of ∗ will di�eronly by a kth. root of unity whih will be irrelevant to our argument. Anexpliit hoie of ξ would be ε2mε2m−3ε2m−4ε2m−7ε2m−8...(ψ

ω
k ), with the lastsubsript of ε being even or odd depending on the parity of m− k.Let ζ = p2m(ξ). To show that 〈ζ, ζ〉 > 0 we ould apply proposition

4.2 of [?℄ but beause of di�erenes in the setup suh as speialisation tonon-positive values and the olouring restrition we prefer to give anotherproof.We begin by proving, by ontradition, that 〈ζ, ζ〉 annot be 0. This willbe the main step in the proof of the theorem. So suppose 〈ζ, ζ〉 = 0. Theform 〈, 〉 is then positive semide�nite and ζ spans its kernel. (Note that ζ isnot zero sine when one expands p2m as a linear ombination of words, thereis only one term that gives ξ, namely the identity of Am.) Sine the kernelof a form is invariant under any isometry we onlude that Adρ 1

2 (ζ) = zζwhere Adρ 1

2 is the rotation by 1 of appendix ?? and z is a omplex numberof absolute value 1 (in fat a root of unity by ??).We shall now determine whih words in the sum for p2m ontribute to theoe�ient of ξ in ζ and Adρ 1

2 (ζ). We draw pitures of all the elements below20



where we have deformed the annulus into the region between two retanglesand the outer annulus ontains ψωk . The distinguished boundary regions aremarked with a ∗ in all ases. The only way to obtain ξ from a summand of
p2m is to take the identity whose oe�ient is of ourse 1. This follows frominspetion of the �gure below. Note that we have redrawn ξ by deformingthe inner annulus boundary into a retangle with all the 2k boundary pointson top. This is to help visualise what is happening inside the box ontaining
p2m whih we have also drawn as a retangle with 2m input strings at thebottom and 2m output ones at the top.Now onsider Adρ 1

2 (ξ) as below:The oe�ient of ξ in (Adρ
1

2 )−1(ζ) is the same as the oe�ient of
Adρ

1

2 (ξ) in ζ so we must onsider all possible TL tangles that an be in-serted into the retangle R ontaining p2m that will give the above piture of
Adρ

1

2 (ξ). If suh a tangle has less than 2m−2 through strings then there is ahomologially non-trivial irle in the annulus whih intersets the strings ofthe tangle less than 2m−2 times, whereas any suh irle in the diagram for
Adρ

1

2 (ξ) intersets the strings of the tangle at least 2m− 2 times. And theremust be some non-through strings sine the identity inserted into R gives
ξ itself. So at both the top and bottom of R there is preisely one pair ofneighbouring boundary points onneted to eah other. Number the bound-ary points at the top of R as 1, 2, .., r, r+ 1, r+ 2, .., r+ 2k, r+ 2k + 1, .., 2mwhere r + k = m, and the same on the bottom. Then if i and i + 1 areonneted on the bottom of R for i < r or i > r + 2k the same argument aswe used to get 2m− 2 through strings applies and we do not get Adρ 1

2 (ξ). Ifthey are onneted for i between r+1 and r+2k−1 we get zero. So the onlyallowed onnetions on the bottom are between r and r+1 or between r+2kand r + 2k + 1. On the top of R it is lear that the only boundary pointsthat an be onneted are 2m− 1 and 2m. Moreover we see the two tangleswith both these top and bottom ombinations do indeed give roots of unitytimes ξ. As words on the Ei, these two tangles are E2m−1E2m−2...Er+2k and
E2m−1E2m−2...Er. So by ?? we dedue that there are omplex numbers z1 and
z2 of absolute value 1 (in fat both roots of unity) so that, if δ = 2cosh(x),

z1 sinh((r + 2k)x) + z2 sinh(rx)

sinh(2mx)
= 1.21



But sine sinh(2mx) = sinh(rx) cosh((r+2k)x)+sinh((r+2k)x) cosh(rx)and cosh t > 1 for t 6= 0, this is impossible for x 6= 0. This ontradits thehypothesis that 〈ζ, ζ〉 = 0.We now need to rule out the possibility that 〈ζ, ζ〉 < 0. But the interval
(2,∞) is onneted and 〈ζ, ζ〉 is a ontinuous funtion sine the polynomialsin the denominators appearing in p2m have all their zeros in [−2, 2]. So itsu�es to exhibit a single value of δ greater than 2 for whih 〈ζ, ζ〉 ≥ 0. In[?℄ we showed that eah of the modules V k,ω

m , for δ any integer n ≥ 3, oursas a summand of the tensor produt of m opies of the 3x3 matries whihhas a natural ATL struture and positive de�nite inner produt.So V k,ω
m has theA-module struture we asserted and 〈, 〉 is positive de�niteon it. By indution we are through. �Corollary 5.8 The Hilbert TL-module V k,ω is irreduible.Proof. V k,ω is ATL(ψk,ω) so apply ??. �We now take up the ase of TL-modules with lowest weight 0. This issomewhat di�erent from the previous situation as the algebras ATL± arein�nite dimensional.Proposition 5.9 The abelian algebra ATL± is generated by the positive self-adjoint element σ∓σ±.Proof. After removing any homologially trivial irles (whih ount for afator of δ by note (iii) after de�nition ??), an annular (0, 0)-tangle onsistsof an even number of homologially non-trivial irles inside the annulus,whih is by de�nition a power of σ∓σ±. Positivity of σ∓σ± follows from ??.

�Corollary 5.10 In an irreduible Hilbert TL-module V of lowest weight 0the dimensions of V± are 0 or 1 and the maps σ∓σ± are both given by a singlereal number µ2 with 0 ≤ µ ≤ δ.Remark 5.11 The number µ above orresponds to the z + z−1 of Grahamand Lehrer. The main di�erene between their setup and ours is that a singlehomologially non-trivial irle in an annulus does not at by a salar in anirreduible representation - it is in fat the map σ±.Theorem 5.12 An irreduible Hilbert TL-module V of weight 0 is deter-mined up to isomorphism by the dimensions of V± and the number µ de�nedin orollary ??. Moreover 0 ≤ µ ≤ δ .22



Proof. The uniqueness of the TL-module is a onsequene of ?? sine atleast one of V+ and V− is non-zero. By de�nition, µ ≥ 0. To see that µ ≤ δ,note that in an irreduible Hilbert TL-module V , as operators on V1, theelements F1 and F2 satisfy F1F2F1 = µ2F1, and 1
δ
F1 and 1

δ
F2 are projetions.

� We now take up the existene of Hilbert TL-modules of lowest weight 0.There is one value of µ for whih the TL-module has already been onstrutedand that is of ourse µ = δ. Let V δ
k = TLk. By ?? we know that V δ

k is aHilbert TL-module sine δ > 2. We have thus established the following.Proposition 5.13 Any irreduible Hilbert TL-module of lowest weight zeroand µ = δ is isomorphi to V δ.We now obtain all irreduible TL-modules of lowest weight 0 with 0 <
µ < δ.De�nition 5.14 For eah k > 0 and ± when k = 0 let Thk be the set of allannular (k,+)-tangles with no homologially trivial irles and at most onehomologially non-trivial one.Lemma 5.15 The ardinality of Thk is (

2k
k

), and 1 when k = 0.Proof. Suh a tangle onsists of an ordinary Temperley Lieb diagram withthe outer annulus boundary in either a shaded or unshaded region aordingto whether it is or is not surrounded by a homologially non-trivial irle.There are k + 1 regions in an ordinary TL k-tangle. �Now for eah number µ we form the graded vetor spae V µ, whose kth.graded omponent has a basis Thk , and equip it with a TL-module strutureof lowest weight 0 as follows:If T is an ATL(n, k)-tangle and R ∈ Thk, form the tangle TR. Let c bethe number of ontratible irles in TR. Suppose the inner boundary irlein TR is surrounded by 2d+ γ homologially non-trivial irles where γ is 0or 1. Then
T (R) = δcµ2dT̂Rwhere T̂R is TR from whih all ontratible irles and 2d of the non-ontratible ones have been removed.Proposition 5.16 The above de�nition makes V µ into a TL-module of di-mension 1√

1−4z
, in whih σ±σ∓ = µ2.23



Proof. In the piture for T1T2R (without any irles removed), irles, on-tratible or not, are either formed already in T2R or formed when T1 is appliedto it. The dimension formula follows from ?? and page 203 of [?℄. �Note that the hoie of (k,+)-tangles rather than (k,−) ones to de�ne
V µ was arbitrary. If we had made the other hoie the map T → µ−1Tσ+would have de�ned an isometri TL-module isomorphism with the hoie wehave made. We now de�ne an invariant inner produt on V µ.De�nition 5.17 Given S, T ∈ Thk let 〈S, T 〉 = δcµ2d where c is the numberof ontratible irles in the (±,±)-tangle T ∗S and d is half the number ofnon-ontratible ones.Invariane of 〈, 〉 follows from the fat that T ∗S = 〈S, T 〉T0 where T0 isthe annular (±,±)-tangle with no strings whatsoever.Theorem 5.18 For 0 < µ < δ the above inner produt is positive de�niteand so makes V µ into an irreduible Hilbert TL-module of lowest weight 0.Proof. The proof is struturally idential to that of theorem ??. De�ne thealgebra Am as before and make the same assertion to be proved by indution,namely:Assertion: As a Am-module, V k,ω

m is isomorphi to ⊕
j=2k,2k+2,2k+4,...,2m V

j
2m,the sum being orthogonal with respet to the positive de�nite form 〈, 〉.By indution we need only show that any vetor in the image of theidempotent p2m ∈ Am has non-zero inner produt with itself. The vetor ξbeomes the tangle in Thm with m strings onneting the �rst m boundarypoints to the last m, going around the internal annulus boundary. If m isodd there are no irular strings and if n is even there is one suh stringsurrounding the internal annulus boundary. The vetor ζ is the result ofapplying p2m to ξ. We illustrate in the odd ase below.We are trying to show that 〈ζ, ζ〉 > 0 and we begin by supposing, by wayof ontradition, that 〈ζ, ζ〉 = 0. This means that ζ is an eigenvetor for therotation by one (see the appendix). As we did in ?? we must �nd the termsin the expansion of p2m as TL diagrams in ζ that give a multiple of Adρ 1

2 (ξ).We draw the unit vetor µAdρ 1

2 (ξ) below.24



It is lear that there is only one TL diagram that an be inserted in theretangle R ontaining p2m. It is the one where the mth. boundary point atthe bottom of R is onneted to the (m+1)th., and the last boundary pointat the top R is onneted to the seond to last. All other strings must bethrough strings. This diagram is the word E2m−1E2m−2...Em so by fat ?? theoe�ient of µAdρ 1

2 (ξ) is, in absolute value, sinh(mx)

sinh(2mx)
where δ = 2cosh(x).So sine µ < δ < cosh(mx), this oe�ient is never 1

µ
.This ontradits the assumption that 〈ζ, ζ〉 = 0. The region

{(µ, δ) : 0 < µ < δ, δ > 2} is onneted so as in ?? it su�es to �nd a singlevalue in that region for whih 〈, 〉 is positive semide�nite. Here we appealto [?℄ where we gave planar algebras P with spherially invariant partitionfuntions for any (�nite) bipartite graph. The adjaeny matrix Λ of thegraph has a simple meaning in our piture. It is the matrix of the lineartransformation σ+ with respet to bases of minimal projetions of P+
0 and

P−
0 . The parameter δ of the planar algebra is the norm of Λ, i.e. the squareroot of the largest eigenvalue of ΛTΛ. Choose a unit eigenvetor v of ΛTΛwhose eigenvalue is between 0 and δ2. And let µ be the positive square rootof this eigenvalue. Consider the TL-submodule ATL(v) of P generated by
v. It is linearly spanned by ∪kThk(v). Moreover the inner produt betweenvetors in ATL(v) is given preisely by the formula ?? used to de�ne theinner produt in V µ

k . But the inner produt on the planar algebra P is byonstrution positive de�nite so the one on V µ
k is positive semide�nite. Hene

〈ζ, ζ〉 > 0 and the indutive assertion is true for m.Irreduibility follows from ?? as before. �The last ase to onsider in the generi region δ > 2 is the ase µ = 0.De�nition 5.19 For eah k let Th±k be the set of annular (k,±)-tangles withno irular strings, ontratible or otherwise.Lemma 5.20 The ardinality of Th±k is 1

2

(
2k

k

) if k > 0, 1 if k = ± and 0if k = ∓.Proof. The set Th±k splits into two subsets of equal ardinality-thosewhere there is a single non-ontratible irle and those where there is none.The result then follows from ??. �Now we form the graded vetor spae V 0,±, whose kth. graded omponenthas a basis Th±k , and equip it with a TL-module struture of lowest weight
0 as follows: 25



If T is an ATL(n, k)-tangle and R ∈ Th±k , form the tangle TR. Let c bethe number of ontratible irles in TR. Then
T (R) =

{
0 if there is a non-ontratible irle in TR
δc T̂R otherwisewhere T̂R is TR from whih all ontratible irles and 2d of the non-ontratible ones have been removed.Proposition 5.21 The above de�nition makes V 0,± into a TL-module ofdimension 1

2
√

1−4z
, in whih σ± = 0.Proof. The module property follows as in ??. The dimension formulafollows from the way the k = 0 ase is handled in ?? and ??. Finally, σ±reates a non-ontratible irle. �We now de�ne an inner produt on V 0,±.De�nition 5.22 Given S, T ∈ Th±k , suppose there are c ontratible irlesin S∗T . Then set

〈T, S〉 =

{
0 if there is a non-ontratible irle in S∗T
δc otherwiseThis inner produt is invariant for the same reason as before.Theorem 5.23 For δ ≥ 2 the above inner produt is positive de�nite and somakes V 0,± into an irreduible Hilbert TL-module of lowest weight 0.Proof. Again the proof will be via an indutive deomposition of V 0,±

m withrespet to non-annular TL. The rotation by one is not available but we givea losely related argument whih shows that it is not really the rotation byone that is important but the existene of two opies of non-annular TLwhih di�er with respet to the shading. For simpliity we will only do the
V 0,+ ase, the argument being the same in the other ase up to obviousmodi�ations.Call TLa2m the Temperley Lieb algebra Am whih we have used in ??and set TLb2m = Adρ

1

2 (TLa2m). The indutive a�rmation we will prove is asfollows:A�rmation:The inner produt of ?? is positive de�nite on V 0,+
m , and for

m odd, as a TLa2m-module, V 0,+
m = ⊕j=2m,2m−4,..,2V

j
2m and as a TLb2m-module,

V 0,+
m = ⊕j=2m−2,2m−6,..,0V

j
2m. For m even the situation is reversed.Note that the fat that the dimensions involved in the a�rmation bothadd up to 1

2

(
2m
m

) are simple binomial identities oming from (1 − 1)2m = 0.26



For m = 0 and m = 1 the assertion is true. The m = 0 ase dependsa bit too muh on onventions so one should hek the ase m = 2 as well.Here V 0,+
2 is 3 dimensional and for TLa, E1 6= E3 6= 0 so by the strutureof TL4, V 0,+

2 must be the irreduible 3-dimensional representation. Withrespet to TLb, E1 = E3 6= 0 so the other two irreduible representationsour. Positive de�niteness of the inner produt is a trivial alulation.So we may suppose that the assertion is proved up to m− 1. If m is odd,redue by E2m ∈ TLb and use proposition ?? to onlude that the strutureof V 0,+
m as a TLb2m-module is orret, hene the form is positive de�nite byuniqueness as in ??. Reduing by E2m ∈ TLa we see that the struture of

V 0,+
m as a TLa2m-module is orret. If m is even, simply reverse the roles of aand b in the argument. We have only used positive de�niteness with respetto ordinary TL so the theorem is true for δ = 2 as well. �To end this setion let us summarize our results. We have obtained aomplete list of all irreduible (hene all) Hilbert TL(δ)-modules for δ > 2and alulated their dimensions. They are distinguished by two invariants-the lowest weight k and another number whih is a kth. root of unity if
k > 0 and when k = 0 a real number µ with 0 ≤ µ ≤ δ. The ase µ = 0is exeptional in that there are two distint modules distinguished by theshading in the 0-graded omponent. The following table ontains all theinformation. The TL-modules for δ > 2Representation Lowest wt Ation of ρ/σ± dimension dimV

V k,ω
n , n ≥ k > 0 n ρ = ωid

(
2n
n−k

)
zk C(z)2k

√
1−4z

ωn = 1

V TL
n 0 σ± = δid 1

n+1

(
2n
n

)
C(z)

V µ
n 0 σ±σ∓ = µ2id

(
2n
n

)
1√

1−4z

V 0,±
n 0 σ± = 0 1

2

(
2n
n

)
1

2
√

1−4z

dimV 0,±
± = 1

dimV 0,±
∓ = 0We may also present the information pitorially. In the following piturethere is an irreduible representation for eah ross and eah point on thesegment [0, δ] (with 0 doubled as ±), and we have represented the pair (k, ω)by the omplex number kω. 27



6 The Poinaré series of a planar algebra.De�nition 6.1 If P is a planar algebra the Poinaré series of P is the di-mension of the trivial P -module, i.e.
ΦP =

1

2
(dimP+

0 + dimP−
0 ) +

∞∑

i=1

dimPiz
iThe question of what power series arise as Poinaré series for planaralgebras seems to be a di�ult one. If a planar algebra P ontains anotherone Q, P beomes a Q-module. In the C∗-ase P will be a ountable diretsum of Hilbert Q-modules so that the the Poinaré series for P will be alinear ombination with non-negative integer oe�ients of the dimensionsof Hilbert Q-modules. This an give preise information on the Poinaréseries for P .Every planar algebra ontains at least a quotient of the Temperley Liebplanar algebra so we an apply the method of the above paragraph with

Q = TL to obtain a formula for the Poinaré series of a spherial C∗-planaralgebra with δ > 2 whih is partiularly simple sine all Hilbert TL-modulesof the same lowest weight have the same dimension by orollary ??.De�nition 6.2 Let P be a C∗ planar algebra with spherially invariant pos-itive de�nite partition funtion with δ > 2 and dim(P±
0 ) = 1. De�ne ak tobe 1 for k = 0 and the number of opies of V k,ω, for all ω, in the TL-module

P , for k > 0. Let ΘP (q) be the generating funtion
ΘP (q) =

∞∑

j=0

ajq
jTheorem 6.3 With hypotheses as in ??,

ΘP (q) =
1 − q

1 + q
ΦP (

q

(1 + q)2
) + q.Proof. By remark ??, as a TL-module, P onsists of itself plus the sumfor eah k of ak TL-modules of the same dimension. So by ?? we have:

ΦP (z) = C(z) +

∑∞
k=1 akz

kC(z)2k

√
1 − 4zBut zC2 = C −1 so if q = zC2, C = q+1 and zC2 = z(1+ q)2 so z =

q

(1 + q)2
.Finally C = 1 + q implies √1 − 4z =

1 − q

1 + q
and we are done. �28



Corollary 6.4 With hypotheses as in ??,
ΘP (q)− q = 1 +

∞∑

r=1

[ r∑

n=0

(−1)r−n
2r

r + n

(
r + n

r − n

)
dim(Pn)

]
qr.Proof. Expanding (1 − q)qn

(1 + q)2n+1
by the binomial theorem we get

(1 − q)
∞∑

j=0

(−1)j
(

2n+ j

j

)
qj+n whih, using the binomial identity

(
a

j

)
+

(
a− 1

j − 1

)
=
a+ j

a

(
a

j

) (valid exept when a = j = 0), equals
1 +

∞∑

j=1

(−1)j
2n+ j

j
qj+n. But

1 − q

1 + q
ΦP (

q

(1 + q)2
) =

∞∑

n=0

dim(Pn)
(1 − q)qn

(1 + q)2n+1
.Summing over r = n+ j and n we get the answer. �A C∗ planar algebra with spherially invariant positive de�nite partitionfuntion and dim(P±

0 ) = 1 is known to admit a "prinipal graph" (Λ, ∗).This is a bipartite graph with a distinguished vertex ∗ suh that there is abasis of Pk indexed by the walks on Λ of length 2k starting and ending atthe distinguished vertex. Thus the Poinaré series of the planar algebra isdetermined by Λ. It is not true however that, if (Λ, ∗) is a pointed bipartitegraph and wn is the number of loops of length 2n on Λ beginning and endingat ∗, that ar =

r∑

n=0

(−1)r−n
2r

r + n

(
r + n

r − n

)
wn is non-negative for all r > 1.The list of graphs (of norm >2) for whih any of these integers an be negativeseems to be quite short. All graphs eliminated in [?℄ have a negative ar when

r is one plus the "ritial depth". The same is true of the graphs Xn depitedbelow:The graphs Yn,2,2 depited below have the property that an+1 = 1, an = 0,but an+2 = −1. Thus they annot be prinipal graphs of subfators. Thiswas already proven by Haagerup in [?℄.
Yn,2,229



7 The Temperley-Lieb modules, δ ≤ 2.In setion ?? we will give two novel onstrutions of the planar algebras ofsubfators of index less than 4 (hene of the subfators themselves). Thiswill use some fats about Hilbert TL-modules for δ ≤ 2. In setion ??we gave a omplete desription of Hilbert TL-modules in the generi range.We simply showed that the inner produt on ertain spaes of tangles werepositive de�nite. The situation for δ ≤ 2 is more ompliated. The spaes oftangles V k,ω
n , V µ

n and V 0,±
n , together with the invariant inner produt, exist forall values of the parameters and have the dimensions alulated in setion??. But the inner produt is not always positive de�nite or even positivesemide�nite. In fat by proposition ?? a TL-module will exist i� the innerprodut is positive semide�nite(it is neessarily positive de�nite on the one-dimensional lowest weight subspae) sine we may then take the quotient bythe kernel of the form, whih is invariant under ATL.De�nition 7.1 Suppose the parameters are suh that the inner produt ispositive semide�nite on V k,ω, V µ or V 0,±. We all Hk,ω,Hµ or H0,± respe-tively the Hilbert TL module obtained by taking the quotient by the subspaeof vetors of length 0. Otherwise we say that the Hilbert TL-module does notexist.In order to get quikly to the most original onstrutions of this paperwe prefer to postpone the omplete lassi�ation of the Hilbert TL-modules,inluding the values of the parameters for whih they exist, to another paper.Also the onstrution of the D series of subfators in index less than 4 anbe easily aomplished using a period 2 automorphism of the A series (whihwere already onstruted in [?℄)-see [?℄. The onstrutions of subfators ofindex equal to 4 are quite elementary. So we will limit our onstrution tothe more di�ult ases of E6 and E8 whih were �rst onstruted in [?℄ and[?℄ respetively. Thus we gather together the information we will need in thefollowing speial result whih admits immediate generalisation.Theorem 7.2 Let n be 12 or 30, let q be eiπ/n and δ = q + q−1. Suppose

µ > 0 is 1 or of the form qa + q−a with a and n relatively prime. Then if theHilbert TL-modules Hk,ω and Hµ exist, the quotient maps from V k,ω and V µare isomorphisms when restrited to the m − graded parts for m ≤ 3 when
n = 12 and m ≤ 5 when n = 30.Proof. Our hypotheses imply that the inner produts on V k,ω and V µ

k arepositive semide�nite for the graded piees in question. (We will show theexistene of many of these Hilbert TL-modules below.)30



So in the indutive arguments of the theorems of setion ?? it su�es toshow that the vetors ζ annot be eigenvetors for Adρ 1

2 . We will do this asbefore by showing that the oe�ients of ξ in ζ and Adρ− 1

2 (ζ) are di�erent.We begin with the ase k > 0 and let r + k = m as in ??. The formularelating the oe�ients in this ase is
sin

2mπ

n
= z1 sin

rπ

n
+ z2 sin

(r + 2k)π

nwhere z1 and z2 are roots of unity. We need to look more losely at the natureof z1 and z2. Observe that the two terms on the right hand side ome fromthe diagrams below, where we have now been areful to �x a �rst boundarypoint on the inside annulus boundary.These two diagrams di�er in V k,ω
m by a fator of ω so the above equationan atually be rewritten (for some root of unity z)

(∗) z sin
2mπ

n
= sin

rπ

n
+ ω sin

(r + 2k)π

n(with perhaps some irrelevant ambiguity onerning ω and ω−1).We only need to show that formula (∗) does not hold in any of the asesenumerated in the statement of the theorem. The ases ω = ±1 (hene
k = 1, 2) are exluded immediately by taking the absolute value and using theformula for the sine of the sum of two angles. This leaves only n = 30 and theasesA) k = 3, r = 1, 2 and ω = e

2πi
3B) k = 4, r = 1 and ω = ±i.Case A) is seen to be impossible in absolute value simply by drawing

sin
rπ

30
and ω sin

(r + 2k)π

30
in the omplex plane. Taking absolute values inase B) would give sin2 π

3
= sin2 π

30
+ sin2 9π

30
whih is not true.The reader may wonder if it is ever possible for (∗) to be satis�ed. If wehoose n = 12, k = 3, r = 1 and ω = e

2πi
3 we have the identity eπi

12 sin
8π

12
=

sin
π

12
+ e

2πi
3 sin

7π

12
. A similar identity holds for n = 30, k = 5, r = 1 and

ω = e
2πi
5 .We now turn to the ase k = 0. By the same argument as in theorem?? with a priori positive semide�niteness as above we see that the form willbe positive de�nite provided 2 cos mπ

n
is never equal to µ for the values of31



m under onsideration. This is obvious if n and a are relatively prime and
a 6= 1. If a = 1 we are in the TL situation and the quotient map from V δ to
Hδ must be an isomorphism sine the inner produt on the usual TL algebrais positive de�nite for the values of m in question (and indeed for m quite abit larger). In the ase µ = 1 one simply heks that 2 cos mπ

n
is not ±1. �8 Constrution of E6 and E8 subfators.We begin by reviewing the non-existene proof for E7 given in [?℄, in thelanguage of the present paper. We want to extrat information about the

E6 and E8 ases. Let P be a C∗-planar algebra with spherially invariantpositive de�nite partition funtion having prinipal graph (Λ, ∗). Assume ∗has only one edge onneted to it. We de�ned the notion of "ritial depth"
d in [?℄ to be 1 plus the distane from * to the �rst vertex of Λ of valenegreater than 2. (So d = 3, 4, 5 for E6, E7 and E8 respetively.) Deomposingthe TL-module P into a sum of irreduible ones we see that P ontains thethe lowest weight 0 module Hδ and a lowest weight d module neessarily ofthe form Hd,ω for some dth. root of unity ω. Thus dim(Pd+1) is at least asbig as dim(TLd+1) + r where r is the rank of the sesquilinear form on V d,ω

d+1.On the other hand by ounting the number of loops starting and ending at
∗ on Λ we see that the dimension of Pd+1 is preisely dim(TLd+1) + 2d+ 1 if
Λ is E6, E7 or E8. So in order for suh a planar algebra to exist there mustbe a dth. root of unity suh that the sesquilinear form on V d,ω

d+1 is degenerate,or alternatively that there is a vetor ν ∈ V d,ω
d+1 with 〈ν, ν〉 = 0. It was shownin [?℄ that no suh vetor exists for E7 so there an be no subfator withprinipal graph E7.However there is suh a vetor ν for E6 provided ω = e±

2πi
3 and for E8provided ω = e±

2πi
5 . We will use preise formulae for these null vetors ν.First some notation.Suppose d and ω are as above and set

q =

{
e

πi
12 for E6

e
πi
30 for E8

κ =

{
e∓

πi
12 in the E6, e

± 2πi
3 ase

e∓
πi
30 in the E8, e

± 2πi
5 ase

η =

{
e∓

πi
2 in the E6, e

± 2πi
3 ase

e∓
πi
3 in the E8, e

± 2πi
5 ase32



δ = q + q−1Let ξ = ε2(ψ
d,ω) and ψ = ε3(ψ

d,ω). Let
ν =

d∑

j=0

ηjρj(ξ) − κ
d∑

j=0

ηjρj(ψ)Lemma 8.1 The vetor ν de�ned above in V d,ω is nul, i.e. 〈ν, ν〉 = 0.Proof. Let v =
∑d

j=0 ρ
j(ξ) and w =

∑d
j=0 ρ

j(ψ). Then the elements ρj(ψ)are mutually orthogonal vetors of length √
δ as are ρj(ψ) so that

〈v − κw, v − κw〉 = 2(d + 1)δ − 2Re(κ〈v, w〉).And 〈v, w〉 = (d + 1)
∑d

j=0〈ρj(ξ), ψ〉. But the only terms in this sum thatare not zero are the ones with j = 0 and j = 1. Thus the sum redues to
〈ξ, ψ〉+ η〈ρ(ξ), ψ〉 and sine ψd,ω is an eigenvetor for ρ of eigenvalue ω, thissum is 1 + ηω. So 〈v− κw, v− κw〉 = 2(d+ 1)(δ−Re(κ(1 + ηω)). And withthe given hoies of κ, η and ω this is zero. �Note that we ould also have dedued the above formula from the knowl-edge that there is a nul vetor whih has to be an eigenvetor for Adρ 1

2 , thenapplying the omment near the end of theorem ??.We now ome to the main new idea in our onstrution. If the planaralgebra P existed one ould hoose an element ξ 6= 0 in Pd orthogonal to TLwhih would generate a opy of the TLmoduleHd,ω. We know from the aboveargument that ω is e± 2πi
3 for E6 and e± 2πi

5 for E8. And the element ξ will thenhave to satisfy the relation ν = 0 with ν as above. Our strategy will be tolook for suh an element ξ in some (not onneted) planar algebra Q then usethe relation ν = 0 to show that the planar algebra R generated by ξ inside Qis in fat the planar algebra we want. Beause of the pauity of graphs withnorms less than 2 it will su�e to show that R± is one-dimensional, i.e. anyplanar 0-tangle whose internal diss are all labelled by ξ is in fat a salarmultipe of the identity. The relation ν = 0 goes a long way to proving thatbut for E8 we will have to work somewhat harder.The soure of planar algebras Q whih are to ontain ξ as above will bethe planar algebras of bipartite graphs onstruted in [?℄. In fat to obtainthe E6 planar algebra we will use the bipartite graph E6 and similarly for
E8. Thus our �rst task is to deompose the planar algebra of a bipartitegraph as an orthogonal diret sum of TL-modules. Note that we showedin [?℄ that these planar algebras do support a spherially invariant positivede�nite inner produt so they are Hilbert TL-modules by ??. We do this ineah ase separately. We use q and δ as above. Choose a bipartite struture33



U+∪U− on E6 as in [?℄. Let PE6 be the planar algebra of the bipartite graph
E6 with respet to the spin vetor whih is the Perron-Frobenius eigenvetor
µ = (µa) for the adjaeny matrix of E6 normalized so that ∑

a∈U+

µ4
a = 1.By [?℄, PE6 has spherially invariant positive de�nite partition funtion so itbeomes a Hilbert TL-module by ??.Theorem 8.2 Let µ = q5 + q−5. Then as a TL-module PE6 ontains theorthogonal diret sum of Hδ ,Hµ,H1,H2,−1,H3,e

2πi
3 and H3,e−

2πi
3 (whih allexist), eah with multipliity one, and no other TL-modules of lowest weight

3 or less.Proof. The algebras PE6

± have bases of projetions pa whih are the loops oflength 0 starting and ending at the verties of U±. Let Λ be the (0, 1) matrixwhose rows are indexed by the verties of U+ and olumns are indexed bythe verties of U− with a 1 in the (i, j) position i� i is onneted to j in E6.Aording to the planar struture on PE6 the matrix Λ is the matrixof the linear map σ+ : PE6

+ → PE6

− with respet to the orthonormal bases
µ−2
a pa of PE6

± . The eigenvalues of ΛtΛ are 1, δ2, µ2 with µ = q5 + q−5 = δ−1.The one dimensional subspaes spanned in PE6

+ by an orthonormal basisof eigenvetors for ΛtΛ are invariant under ATL+ so by ?? they generateorthogonal TL-submodules H1,Hδ and Hµ of PE6 .The very existene of the lowest weight vetors inside a Hilbert TL-module implies immediately that the relevant irreduible Hilbert TL-moduleexists. This will apply to all the irreduible modules we �nd so we point itout here and refrain from mentioning it again in this theorem or the next.The Bratteli diagram of PE6 (for one hoie of the bipartite struture) isbelow.So dimPE6

± = 3, dimPE6

1 = 5, dimPE6

2 = 16 and dimPE6

3 = 53. Now
dimHδ

1 + dimHµ
1 + dimH1

1 = 5 so PE6 ontains no submodules of lowestweight 1. But if W = Hδ
2 ⊕Hµ

2 ⊕H1
2 ⊆ PE6

2 , we have dimW = 2+6+6 = 14by ??. So PE6 ontains two orthogonal TL-modules of lowest weight 2. To�nd out whih they are we need to know the eigenvalues and multipliities of
ρ on W⊥ ∩ PE6

2 . But the representations of ρ on W and PE6

2 permute basesquite expliitly so we may ompute eigenvalues simply by ounting orbits.By inspeting tangles in Th2 we see that ρ has two 2-element orbits and two�xed points on eah of Hµ and H1. And ρ is the identity on Hδ. So on W ρhas the eigenvalue 1 with multipliity 10 and −1 with multipliity 4.34



On the other hand, ρ ats on loops on E6 essentially by rotation. Fixedloops starting in U+ are in bijetion with the edges of the graph and on otherloops ρ ats freely. Thus on PE6

2 ρ has eigenvalue 1 with multipliity 10 and
−1 with multipliity 5. We onlude that ρ = −id on W⊥∩PE6

2 so that PE6ontains the TL module H2,−1 orthogonal to Hδ ⊕ Hµ ⊕ H1 and no othermodules of lowest weight 2.We now turn to PE6

3 and repeat the ount as above. The W = Hδ
3⊕Hµ

3 ⊕
H1

3 ⊕ H2,−1
3 has dimension 5 + 20 + 20 + 6 = 51 by ??. And the rotation

ρ, now of period 3 has, as permutations of bases, 2, 2, 2 and 0 �xed pointson Hδ
3,Hµ

3 ,H1
3 and H2,−1

3 respetively. Thus ρ on W has eigenvalue 1 withmultipliity 3 + 8 + 8 + 2 = 21 and eigenvalues e± 2πi
3 eah with multipliity

1+6+6+2 = 15. On loops of length 6, ρ has 5 �xed points as before and 16orbits with 3 elements. Thus on PE6

3 it has eigenvalues 1 with multipliity 21and e± 2πi
3 eah with multipliity 16. Hene on W⊥ ∩ PE6

3 , ρ has eigenvalues
e±

2πi
3 eah with multipliity 1. Choosing an orthononormal basis ofW⊥∩PE6

3of eigenvetors of ρ we are done. �We now repeat the ounting of theorem ?? for E8. So hoose a bipar-tite struture U+ ∪ U− on E8 as in [?℄. Let PE8 be the planar algebra ofthe bipartite graph E8 with respet to the spin vetor whih is the Perron-Frobenius eigenvetor µ = (µa) for the adjaeny matrix of E8 normalizedso that ∑

a∈U+

µ4
a = 1. By [?℄, PE8 has spherially invariant positive de�nitepartition funtion so it beomes a Hilbert TL-module by ??.Theorem 8.3 Let µ1 = q7 + q−7, µ2 = q11 + q−11 and µ3 = q13 + q−13. Thenas a TL-module PE8 ontains the orthogonal diret sum of

Hδ,Hµ1 ,Hµ2 ,Hµ3 ,H2,−1,H3,e
2πi
3 ,H3,e−

2πi
3 ,H4,−1,H5,e

2πi
5 ,H5,e−

2πi
5 ,H5,e

4πi
5and H5,e−

4πi
5 , eah with multipliity one, and no other TL-modules of lowestweight 5 or less.To anaylse the lowest weight 0 spae observe that ΛtΛ is now a 4 x 4 matrixwith δ2 = (q + q−1)2 as largest eigenvalue. Now 7, 11 and 13 are all primeto 60 and µ1 = q7 + q−7, µ2 = q11 + q−11 and µ3 = q13 + q−13 are all distintwith positive real part. So the eigenvalues of ΛtΛ are δ, µ1, µ2 and µ3. Di-agonalising σ−σ+ as before we see that PE8 ontains the orthogonal diretsum of Hδ ,Hµ1 ,Hµ2 and Hµ3 . The dimensions of the Hδ

k,Hµ1

k ,H
µ2

k and Hµ3

k ,for the relevant valuse of k, as well as the other TL-modules we will meet inthis proof, are all the same as their values for generi δ by theorem ??.From the Bratteli diagram for PE8 or by any other means of ountingloops we have dimPE8

1 = 7, dimPE8

2 = 21, dimPE8

3 = 73, dimPE8

4 = 269 and
dimPE8

5 = 1022. 35



As in the previous ase this means there are no TL-modules of lowestweight 1. The ontribution of Hδ ,Hµ1 ,Hµ2 and Hµ3 to dimPE8

2 is 2 + 6 +
6 +6 = 20 so PE8 ontains a single TL-module of lowest weight 2. Countingorbits as in ?? we onlude that this module is H2,−1. Thus the TL-modulesof lowest weight less than 3 span a subspae Wof dimension 5+20+20+20+
6 = 71 in the 73-dimensional spae PE8

3 . To �nd out whih two irreduible
TL-modules span the orthogonal omplement of W we ount multipliitiesof the eigenvalues of ρ (with ρ3 = 1) as before. On Hδ

3 there are two �xedpoints and on eah of the Hµ
3 there are two �xed points. On H2,−1

3 thereare no �xed points. So the multipliity of 1 is the total number of orbits is
3 + 8 + 8 + 8 + 2 = 29 and eah of e± 2πi

3 has multipliity the total number oforbits of size 3 whih is 1 + 6 + 6 + 6 + 2 = 21. On loops of length 6 on E6there are 7 �xed points as usual and therefore eah of e± 2πi
3 has multipliityone on the orthogonal omplement of W . Diagonalising ρ shows that PE6ontains H3,e

2πi
3 ⊕H3,e−

2πi
3 .In the ase of lowest weight 4, the multipliities are more triky to om-pute beause 4 is not prime. We only sketh the argument beause ourmain results need only the existene of single TL-module of lowest weightfour, whih an be obtained simply via ounting. Indeed the subspae

W ⊆ PE6

4 spanned by TL-modules of lowest weight less than 4 has dimension
14+70+70+70+28+8+8 = 268 whih is one less than dimPE8

4 . We leaveit to the reader to hek that the multipliities of 1, i,−i are the same on
W as on loops on E6 starting in U+. The only subtle point is that althoughthere are no �xed points for ρ2 on annular (2, 4) tangles there are tanglessuh that, in V 2,−1

4 , are sent by ρ2 to −1 times themselves.Finally we takle the ase of lowest weight 5. The spae W de�ned asabove has dimension 42 + 252 + 252 + 252 + 120 + 45 + 45 + 10 = 1018. Butnow the multipliity ount is very simple sine 5 is prime and we only haveto ount �xed points. Here is the ount on W , obtained simply by lookingat tangles: Number of �xed points for ρ (ρ5 = 1)
Hδ Hµ H2,−1 He±

2πi
3 H4,−1 Loops on E8

2 2 (times 3) 0 0 (times 2) 0 7Number of orbits of order 5 for ρ (ρ5 = 1)
8 50 (times 3) 24 9 (times 2) 2 203Thus the multipliity of eah of the primitive �fth roots of unity on W is

8+3× 50+24+9× 2+2 = 202. So eah primitive �fth root of unity ourswith multipliity 1 in W⊥ ∩ PE8

5 and by diagonalising ρ we are done. �We will need the following slight addition to the previous results whih36



takes into aount the interation of the TL-module struture of a C∗-planaralgbebra with the ∗-struture.Proposition 8.4 Let P be a C∗-planar algbebra with spherially invariantpositive de�nite partition funtion. The linear span of all irreduible TL-modules isomorphi to a given one is ∗-invariant. In partiular a TL-moduleouring in P with multipliity one ontains a self-adjoint non-zero lowestweight vetor.Proof. The involution ∗ is a onjugate-linear isometry of P whih learlypreserves the subspae Wk (of lemma ??)of the TL-module P . For k > 0,eah TL-module whih is the linear span of all irreduible TL-modules iso-morphi to a given one, is generated by the eigenspae of ρ on the orthogonalomplement of Wk. The assertion of the proposition now follows from thesimple relation ρ(x)∗ = ρ−1(x∗). �To give the �rst and simplest of our proofs of the existene of E6 and
E8 planar algebras/subfators, we begin by realling the notion of biunitaryfrom [?℄.De�nition 8.5 If P is a C∗-planar algebra, a biunitary U ∈ P is a unitaryelement of P2 suh that if W = U−1 then the following two equations hold:andGiven a biunitary U we adopt the following onvention for making er-tain tangles in whih the strings are allowed to ross into a planar tangle inthe usual sense. (Note that we are using the shading to de�ne loal stringorientation in this paper so that a single arrow on a string in this paperorresponds to two in [?℄.) Suppose T is a tangle, labelled or not, ontain-ing ertain privileged strings whih are oriented and are allowed to ross(transversally) the other strings of the tangle but not themselves. Shade theregions of T − {strings of T} with a shading onsistent with that near theboundary diss. Then make T into a tangle by replaing the rossings bylabelled diss aording to the diagram below:37



Remark 8.6 It was observed in [?℄ that if one has a C∗-planar algebra Pwith a biunitary U then the (graded) subspae PU of P onsisting of allelements R for whih there is a Q related as below forms a planar subalgebraof P .Proposition 8.7 Consider the C∗-planar algebra TL for 0 < δ ≤ 2 andsuppose A ∈ C is suh that δ = −A2 − A−2. Then the element
U = AE1 + A−1id is a biunitary.Proof. Observe that A is neessarily a root of unity and the inverse of U is
Aid+ A−1E1. The onlusion follows by simple pitures. �Here is a piture of this U :De�nition 8.8 If P is a C∗-planar algebra and U a biunitary in P de�ne,for eah k the transfer matrix T ∈ APk to be the annular tangle in whiheah internal boundary point i is onneted by a string straight to externalboundary point i+1 and there is a single oriented string whih is a homolog-ially non-trivial irle going round the annulus in the lokwise diretion. Tis illustrated for k = 4 below. Note that for k = 0 the T 's are the tangles σ±.The tangle T for k = 4Remark 8.9 Theorem 2.11.8 of [?℄ may be interpreted as saying that the
PU of remark ?? is the eigenspae of largest eigenvalue (= δ2) of T ∗T .Lemma 8.10 With U as in ?? and T as above, let n = 12 or 30 and k = 3or 5 respetively. Let δ = 2cos π

n
and ω = e±

2πi
k . If ψk,ω is a lowest weightvetor in a opy of V k,ω inside a C∗-planar algebra, then

T (ψk,ω) = zψk,ωwith |z| = δ.Proof. If the rossings in T are written as sums of TL elements by ex-panding the U ′s, the fat that ψk,ω is in the kernel of all the ǫ's means thatthe hoie of an �A� or �A−1� term at any of the rossing fores the samehoie at all the other rossings. So there are only two nonzero terms in thesum, one having a oe�ient of A2k and the other one A−2k. The two tanglesgiving non-zero ontributions di�er by a rotation so we need only hek that
|A2k + ωA−2k| = δ whih is easy. � 38



Theorem 8.11 For eah of E6 and E8 there are up to isomorphism two non-isomorphi C∗-planar algebras P with positive de�nite spherially invariantpartition funtion having the given prinipal graph. There is a onjugatelinear isomorphism between the two.Proof. It is well known that the only possible position for the distin-guished point on the prinipal graph is at maximal distane from the triplepoint. This follows from the orrespondene with subfators or by onsider-ing the redution method of [?℄ by minimal projetions orresponding to theverties of the graph.Note that the set of TL-modules ouring in P is an invariant and ouronstrution will give one ontaining eah V 3,e±
2πi
3 for E6 and V 3,e±

2πi
5 for

E8. They will thus be mutually non-isomorphi.The onstrution is quite simple. Let P be the planar subalgebra of
PE6 (resp. PE8) generated by the eigenvetor ψ of ρ of eigenvalue e± 2πi

3(resp.e± 2πi
5 ) in PE6

3 (resp. PE8

5 ) whih is orthogonal to all TL-submodulesof smaller lowest weight. By ?? we may suppose that ψ = ψ∗ so that Pis a C∗-planar algebra. By ?? and ??, any element of P is an eigenvetorfor T ∗T . But on P± T ∗T is σ±σ∓ and we have seen that the eigenvalue δ2has multipliity one. Hene P is onneted. This fores P to have prinipalgraph E6 (resp. E8) beause the only other possibilities are A and D whihould not have an element orthogonal to TL in P3 (resp. P5).We ould avoid the use of theorem 2.11.8 of [?℄ by observing that the lefthand side of the �gure in remark ?? gives 7 (resp. 11) non-zero terms when
U is inserted and that these terms, together with the right hand piture with
Q = ψ are preisely those of the null vetor obtained in lemma ??.Extending the identity on paths onjugate linearly to all of PE6 (resp.
PE8) yields the required onjugate linear isomorphism of planar algebras. �We would now like to give another, muh longer proof of the previousresult. Our reason for giving it is that it uses a method we suspet to bequite general and powerful. The idea will be to isolate ertain planar relationssatis�ed by the generators of a planar algebra and show that labelled tanglesan be redued using these relations to tangles where the generators appear inertain restrited on�gurations. In partiular for tangles without boundarypoints we will show that all ourrenes of the generator an be removed,thereby showing that the planar algebra is onneted. We will arry out theargument only in the more ompliated ase of E8, leaving the E6 ase asan exerise. (In fat the D ase is extremely easy in this regard as thereare more relations-the orank of the matrix of inner produts is atually 2.)One small bonus of this method is that the uniqueness of the planar algebra39



strutures will be easy to see.For the rest of the setion P will denote a C∗-planar algebra with spher-ially invariant positive de�nite partition funtion and ψ will denote an el-ement whih is a lowest weight vetor of length one for a opy of V 5,ω with
ω = e±

2πi
5 ontained in P .The idea will be to exploit as muh as possible the relation of ?? that thevetor ν ∈ V 5,ω

6 obtained from ψ is zero. Our ultimate aim is to �nd relationsthat redue the number of ourenes of diss labelled by ψ in the planaralgebra generated by ψ. The main step will be to show that if there are 2suh diss onneted by 2 or more strings then they an be replaed by TLelements and a single dis. To this end we introdue the following tangles.De�nition 8.12 Let Qp,q and Rp,q be the planar p-tangles with no on-tratible irles and 2 internal diss with p + q boundary points eah. Theinternal diss are onneted to eah other by q strings. The positions of thedistinguished boundary regions are as indiated by the ∗'s in the piture below.In the above pitures, as in subsequent ones, we adopt the onventionthat a string ontaining a dotted retangle with the natural number n in itrepresents n lose parallel opies of the string.Note that p + q = 10.The next lemma is an easy ase of the arguments to follow but it needsto be treated separately. It shows that any tangle ontaining 2 diss labelled
ψ onneted by 9 strings is in fat 0.Lemma 8.13 The tangles Q1,9(ψ, ψ) and R1,9(ψ, ψ) obtained by labelling the
2 internal diss of Q±

1,9 and Q±
1,9 with ψ are proportional to a tangle with asingle opy of Q0,10(ψ, ψ) and R0,10(ψ, ψ) respetively.Proof. We shall only arry out the argument for one position of ∗ as theother argument is struturally idential. Isotope Q1,9(ψ, ψ) so that it lookslike the tangle below:Reognize inside the dotted irle one of the terms in the expression for νin ??. One may thus replae the interior of the dotted irle by the 11 otherterms in ν. Nine of these terms give zero beause a boundary point on thebottom ψ is onneted to itself. One term is just a single urve joining the40



top and bottom boundary points of the outer dis with Q0,10(ψ, ψ) to the leftof it. The other term is −η−1 times the tangle below:After an isotopy and using the fat that ρ(ψ) = ωψ we �nd that
(1+η−1ω−1)Q1,9(ψ, ψ) is a multiple of a tangle with a single opy ofQ0,10(ψ, ψ).
�Lemma 8.14 The elements Q0,10(ψ, ψ) and R0,10(ψ, ψ), of P+ and P− re-spetively, are proportional to eah other in P1 with the natural embeddingsof P+ and P− in P1.Proof. There was an asymmetry in the argument of the previous lemma.If we had worked from the left rather than the right we would have onludedthat Q1,9(ψ, ψ) is a multiple of a 1 tangle with a single opy of R0,10(ψ, ψ)and no other internal diss. Thus both Q0,10(ψ, ψ) and R0,10(ψ, ψ) are in
P+ ∩ P− and proportional to Q1,9(ψ, ψ). �Lemma 8.15 Let Qp,q(ψ, ψ) and Rp,q(ψ, ψ) be the elements of Pn de�nedby labelling both of the internal diss of Qp,q and Rp,q by ψ. Then for q =
1, 2, ...8,if p is odd

Qp,q(ψ, ψ) = −ω−p+1

2 η−
p+1

2 Rp,q(ψ, ψ) +Xand
Rp,q(ψ, ψ) = −ω−p+1

2 η−
p+1

2 ρ(Qp,q(ψ, ψ)) + Yand if p is even,
Qp,q(ψ, ψ) = −ω−p

2 η−
p

2κ−1Rp,q(ψ, ψ) + Zand
Rp,q(ψ, ψ) = −ω−p+2

2 η−
p+2

2 κρ(Qp,q(ψ, ψ)) + Twhere X, Y, Z and T are linear ombinations of labelled tangles with 2internal diss both labelled with ψ having q + 1 strings onneting the twointernal diss. The oe�ients of individual tangles in X, Y, Z and T do notdepend on the partiular planar algebra P .Proof. The argument is struturally the same in all ases so we only do thease when p is odd. Isotope the tangle Qp,q(ψ, ψ) so that it is as below.41



Inside the dotted irle reognise, up to the position of the ∗ of the upperinternal dis, one of the terms in the formula for the nul vetor ν in ??. Thuswe may replae the inside of the dotted irle by the 11 other terms in ν withthe appropriate oe�ients. One of these terms gives the tangle Rp,q(ψ, ψ)with the oe�ient above and the other ones are either 0 beause some stringonnets ψ to itself or they have q + 1 strings onneting the two internaldiss.Now begin with Rp,q(ψ, ψ) and isotope it so it is as below.As before, after rotating the upper internal dis lokwise by p−3 stringsone reognizes one of the terms in the formula for the nul vetor ν. All butone of the other terms give 0 or have q+1 strings onneting the two internaldiss. The one remaining term gives −η−p+1

2 ρ(Qp,q) exept that the positionof ∗ is rotated 2 strings in an antilokwise diretion on both internal diss.This aounts for the total fator ω−p+1

2 . �Let Wp be the subspae of Pp spanned by labelled tangles (ψ being theonly label) with at most 2 internal diss onneted by more than 10 − pstrings. Observe that Wp is invariant under the rotation.Corollary 8.16 With notation as above, for 1 < p < 10

ρ(Qp,q(ψ, ψ)) = ωp+1ηp+1Qp,q(ψ, ψ) +Xand
ρ(Rp,q(ψ, ψ)) = ωp+1ηp+1Rp,q(ψ, ψ) +Xwhere X is in Wp.Proof. Just apply the seond equation of lemma ?? to the �rst, notingthat tangles of the form X, Y et. are invariant under the rotation. �Corollary 8.17 With notation as above, for p = 1, 2, 3, 4, 6, 7 and 8, Qp,q(ψ, ψ)and Rp,q(ψ, ψ) are in W.Proof. The ase p = 1 is overed by lemma ??. For the other values of p weget that, modulo the subspae W, Qp,q(ψ, ψ) and Rp,q(ψ, ψ) are eigenvetorsof ρ with eigenvalue ωp+1ηp+1. But sine ρ has period p they are zero mod

W unless ωp+1ηp+1 is a pth. root of unity. �We will now deal with the ase p = 5 and obtain the same onlusion asin the previous result but only by supposing that P = PE8 and using thedimension and multipliity ounts in this planar algebra.42



Lemma 8.18 Let P be PE8 and ψ be a unit vetor in PE8

5 generating aopy of V 5,ω whose existene is guaranteed by theorem ??. Then for p < 5
Qp,q(ψ, ψ) is in the Temperley Lieb algebra.Proof. Indutively apply orollary ??. Begin with the fat that PE8

+ ∩PE8

− =
Cid to obtain the assertion for p = 0 by lemma ??. The subspae W is thenalways ontained in TL. �Lemma 8.19 Let P be PE8 and ψ be a unit vetor in PE8

5 generating a opyof V 5,ω whose existene is guaranteed by theorem ??. Then
Q5,5(ψ, ψ) = Aψ + xand
R5,5(ψ, ψ) = Bψ + ywhere A and B are salars and x and y are Temperley-Lieb elements.Proof. We will only do the argument for Q, the R ase being the same.From the general struture of a Hilbert TL-module we have the orthog-onal deomposition

PE8

5 = V δ
5 ⊕ Vold ⊕ Vnewwhere V δ are the Temperley Lieb elements, Vold is the linear span of Hilbert

TL-modules of lowest weight less than 5 and Vnew is the intersetion of thekernels of the ǫi for i = 1, 2, ...10 by orollary ??. Note also that V δ
5 , Vold and

Vnew are invariant under the ǫi for all i and the rotation ρ.Write Q5,5(ψ, ψ) = x⊕ y ⊕ z in this orthogonal deomposition. We �rstlaim that y = 0. For if not there would be an i for whih ǫi(y) 6= 0. If i isdi�erent from 5 or 10, ǫi(Q5,5(ψ, ψ)) = 0 whih is a ontradition. If i is 5 or
10 we apply orollary ?? and lemma ?? to obtain

ρ(Qp,q(ψ, ψ)) = x′ ⊕ y ⊕ z′in the orthogonal deomposition. But ρ(Qp,q(ψ, ψ)) is in the kernel of ǫ5 and
ǫ10 so in these ases we onlude y = 0 also.It only remains to show that the z in the above deomposition is a multipleof ψ. But by ??, Q5,5(ψ, ψ) is an eigenvetor of the rotation with eigenvalue
ω modulo V δ, and the multipliity of this eigenspae is 1. �All that remains to prove that the planar algebra Pψ generated by ψ in
PE8 has prinipal graph E8 is to show how to redue the number of internaldiss in tangles labelled with ψ. In fat using the known restritions onprinipal graphs we only need to show that dimPψ

± = 1. This would follow43



from ?? ?? and ?? if it was true that any 10-valent planar graph must havetwo verties onneted by more than one edge. And this is obvious for Eulerharateristi reasons. We prefer to give a more general Euler harateristiargument whih will be useful in more ases and avoids using �well knownfats� about prinipal graphs. We will use tangles in the planar olouredoperad P of setion 2. Suh a tangle T will be alled onneted if the subsetof the plane onsisting of the strings of T and its internal diss is onneted.Reall from [?℄ that a region of a tangle is a onneted omponent of theomplement of the strings and internal diss inside the external dis. A regionwill be alled internal if its losure does not meet the external boundary disof T .Proposition 8.20 If a onneted k-tangle in P has v internal diss, f in-ternal regions and e strings, then
v − e+ f = 1 − 2k.Proof. We follow Euler's argument by observing that ontrating an internalregion to a single internal dis does not hange v− e+ f . Nor does it hangethe fat that the tangle is onneted. When there are no more internalregions any two internal diss must be onneted by a single string, theregions on both sides of whih are not internal. Suh a pair of diss may beombined into a single one along the string onneting themwithout hanging

v− e+ f or onnetedness. After all suh diss have been ombined there is,by onnetedness, a tangle whih is a power of ρ. This has the desired valueof v − e+ f . �Corollary 8.21 If the internal diss of a onneted k-tangle all have 2pboundary points, then
f = 1 +

(p− 1)e− (2p− 1)k

pProof. If we ount the boundary points on the internal diss we have ountedall the strings of the tangle twie exept the 2k strings onneted to theboundary dis. Thus 2pv = 2e− 2k. With v − e+ f = 1 − 2k this gives theanswer. �Corollary 8.22 Let T be a onneted tangle satisfying the hypotheses ofthe preeding orollary. Suppose the boundary of every internal region of Tontains at least 3 strings. Then
(2p− 3)k ≥ 3p+ (p− 3)e.44



Proof. Eah edge whih is not attahed to the boundary dis, is in theboundary of at most 2 internal regions so 3f ≤ 2e− 4k. �Theorem 8.23 Let Pψ be the planar subalgebra of PE8 generated by ψ asabove. Then for k < 5 Pψ
k is equal to the Temperley-Lieb subalgebra.Proof. It su�es to show that any tangle ontaining an internal dis labelledonly with ψ is a linear ombination, modulo the Temperley-Lieb subalgebra,of ones with less internal diss labelled only with ψ. By indution we maysuppose the tangle is onneted. But if the tangle ontains any internal disslabelled by ψ, e is at least 10 so by ?? with p = 5 there has to be an internalregion with only two strings in its boundary. By ?? and ?? we are through.

�Theorem 8.24 For eah ω = e±
2πi
5 there is a unique C∗-planar algebra P(with positive de�nite spherially invariant partition funtion) up to planaralgebra isomorphism with δ = 2cos π
30

and dimP5 = 43, with ρ having eigen-value ω on the orthogonal omplement of the Temperley-Lieb subalgebra of
P5.Proof. By proposition ?? we may hoose the unit vetor ψ to be self-adjoint in theorem ??, whih means that Pψ is a C∗-planar algbebra. Thedimension of P5 is at least 43 sine the dimension of the Temperley-Liebsubalgebra is 42 and ψ is orthogonal to it. But by any 5-tangle all of whoseinternal diss have 10 boundary points and having more than one internaldis must have at least 18 strings so by ?? there have to be 2 diss onnetedby more than one string. By ??,if all internal diss are labelled ψ, the numberof strings onneting the 2 diss an be inreased to 5 modulo terms withless internal diss. Then by ?? the total number of internal diss an bedereased. Thus any 5-tangle labelled only by ψ is a linear ombination of
TL-elements and ψ itself, and dimP5 = 43.Now let P satisfy the onditions of the theorem. Choose an element ψ ∈
P5 orthogonal to the Temperley Lieb subalgebra with ρ(ψ) = ωψ and ψ = ψ∗(by ??). The prinipal graph of P an only be E8 and the same is true for theplanar subalgebra of P generated by ψ so these two planar algebras have thesame dimension and thus are equal. Sine the partition funtion is positivede�nite all the struture onstants of the planar algebra are determined byknowledge of the partition funtions of planar 0-tangles with all internaldiss labelled by ψ. These partition funtions may be omputed by reduingthe number of internal diss to zero. Any suh redution that only usedthe relations of ?? involve oe�ients that are determined entirely by the45



oe�ients of ν in ??. Thus the only possible ambiguity in the partitionfuntion omes from redution of the tangles Q5,5(ψ, ψ) and R5,5(ψ, ψ) aslinear ombinations of TL elements and ψ. In fat only the Q ase needs tobe onsidered sine, as might have been observed in ??, for p odd, Q5,5(ψ, ψ)may be rotated to beome R5,5(ψ, ψ).Observe thatQ5,5(ψ, ψ) = ψ2 so a priori we need to determine 43 unknownoe�ients in the expression ψ2 = Aψ + θ where θ is in the Temperley Liebsubalgebra of P5. But note that both ψ and ψ2 are zero when multipliedon the left or right by the elements Ei for i = 1, 2, 3, 4 so by fat ??, θ isneessarily a multiple of the p5 of ?? and ψ2 = Aψ + Bp5. So the wholeplanar algebra struture is determined by the real numbers A and B. Also
p5ψ = ψp5 = ψ beause the only basis summand in p5 whih gives a non-zeroprodut with ψ is the identity. So p5 and ψ linearly span a 2-dimensional
C∗-algebra A of whih p5 is the identity. We know that the prinipal graphof P is E8 and the partition funtion, appropriately normalised, de�nes theMarkov trae on P . The weights of the trae an be found in [?℄. Callthe minimal projetions in A q1 and q2. Then they are minimal entralprojetions in P5 so their traes τ1 and τ2 an be read o� from [?℄. Suppose
ψ = xq1 + yq2 for some (real) x and y. Sine q1 + q2 = p5 the numbers A and
B are determined by x and y. But ψ2 = x2q1 + y2q2 and ψ is a unit vetorof trae zero so taking the trae of these two equations we get

xτ1 + yτ2 = 0and
x2τ1 + y2τ2 = 1.So x2 is determined whih gives x up to a sign. On the other hand the vetor

ψ was always ambiguous up to a sign. So the arbitrary hoie x > 0 ould beimposed from the start and the partition funtion is ompletely determined.
� We inlude in appendix ?? some observations onerning the presentationof E6 and E8 as planar algebras.A Appendix:The rotation by one.One of the features of the annular Temperley Lieb diagrams that is absentin the dis ase is that there are diagrams whih do not preserve a shadingimposed on the boundary regions. The most obvious suh tangle is therotation by one in whih all strings are through and the i internal boundarypoint is onneted to the i+ 1th. external one. This is not an honest tangle46



aording to our de�nition beause in de�nition ?? we used elements fromthe planar operad of [?℄ where we insisted that planar tangles have a oherentshading. We explained our reasons for this restrition in the introdution to[?℄. But it remains natural to eliminate the shading ondition and de�ne anextended notion of planar algebra in whih the shading ondition, and therequirement that the numbers of boundary points be even, would disappear.Indeed in the paper of Graham and Lehrer the annular TL diagrams have norestritions exept planarity. And in fat onsideration of the rotation by oneauses a major tehnial simpli�ation in our proof of positive de�niteness in??. But rather than extend the whole formalism we shall allow non-shadable
TL diagrams to at on algebra elements, and hene on the modules V k,ω

m bymaking sure there are unshadable elements ating both on the inside and theoutside.We begin with the setup when there are boundary points on the insideand outside of the annuli. So let m be an integer > 0.De�nition A.1 De�ne the annular diagram ρ
1

2 to onsist of an annulus with
2m internal and 2m external distinguished boundary points as usual with the
ith. internal point onneted by a string to the (i+1)th. external one so thatthe strings do not ross. The diagram is onsidered up to isotopy as usual.It makes sense to ompose any annular tangle with ρ 1

2 on the inside orthe outside provided the number of boundary points math up but one willobtain a diagram that is outside ATL. But if the diagram is omposed bothon the inside and the outside by an odd power of ρ 1

2 the result will be in
ATL.De�nition A.2 If T is a tangle in AnnTL(m,n) we de�ne
Adρ

1

2 : AnnTL(m,n) → AnnTL(m,n) by Adρ 1

2 (T ) = ρ
1

2T (ρ
1

2 )−1.Proposition A.3 Adρ
1

2 is an algebroid automorphism whih is the identityon ATL(m,m).Proof. Clearly ρ 1

2 is a square root of ρ and ρ generates ATL(m,m). �Proposition A.4 Adρ
1

2 de�nes an isometry of ÃTLm,k whih ommuteswith the ation of Z/kZ.Proof. Applying Adρ 1

2 to a tangle does not hange the number of throughstrings so Adρ 1

2 ats on the quotient ÃTLm,k. �47



Corollary A.5 Adρ
1

2 de�nes an isometry of V k,ω
m sending an element T (ψωk )to Adρ 1

2 (T )(ψωk ).Remark A.6 The period of Adρ 1

2 on ATL(m,n) is at most LCM(2m, 2n).We have also used the rotation by one on the modules V µ
k .De�nition A.7 De�ne Adρ 1

2 : V µ
k → V µ

k on the basis Thk by
Adρ

1

2 (T ) = µ−1ρ
1

2Tσ±.Proposition A.8 Adρ
1

2 is an isometry of period at most 2k.Proof. The (0, 0)-tangle used to alulate 〈Adρ 1

2 (S), Adρ
1

2 (T )〉 has the samenumber of ontratible irles as the tangle for 〈S, T 〉 but 2 more non-ontratible ones. The fators µ−1 ompensate to give an isometry. �Note that there is no rotation by one on V 0,±
k .B Appendix: Towards a skein theory for E6and E8.Planar algebras provide a framework for knot-theoreti skein theory. In theapproah pioneered and named by Conway ([?℄), a tangle is muh the same aswe have de�ned exept that all the internal diss have four boundary pointsand are labelled by under or over rossings. For the Alexander-Conway andHOMFLY polynomials the strings of a tangle are oriented and the sense of arossing is relative to this orientation. For the Kau�man braket and Kau�-man two-variable polynomials there is no orientation but a shading may beused to give sense to the over and under rossings. (In [?℄ we showed how tohandle the HOMFLY polynomial in an orientation-free manner using labelsthat ontain triple rather than double points in a knot projetion so that allinternal diss are labelled with triple points-one may then orient the stringsas the boundaries of oriented shaded regions.) The relevant planar algebrais in all ases the quotient of the free planar algebra linearly spanned by alltangles, by relations given by three dimensional isotopy (or sometimes themore restritive "regular" isotopy) and ertain "skein relations", the �rst ofwhih was the relation for the Alexander-Conway polynomial in [?℄. Skeinrelations are interesting if they ause major ollapse of the free planar al-gebra, espeially if the quotient is non-zero but �nite dimensional. In the48



examples disussed above the skein relations ollapse tangles with no bound-ary points (i.e. link projetions) to a one dimensional spae and one thusobtains topologial link invariants. In [?℄ we promoted the point of view thatthe Reidemeister moves allow three dimensional isotopy to be thought of asskein relations and we began to investigate planar algebras with more gen-eral Reidemeister-type relations, espeially in work with Bish-see [?℄ and[?℄. One should think of any planar algebra as a generalised skein theorywhere the rossings are replaed by some family of generators. Of oursethese "rossings" no longer neessarily label diss with 4 boundary points.Skein relations will then be linear ombinations of tangles labelled by thegenerators. A olletion of skein relations will be onsidered more or lessinteresting aording to the level of ollapse they ause of the free planaralgebra. Probably any set of skein relations ausing ollapse to �nite dimen-sions(but not to zero) should be onsidered interesting. A point of view verylose to this one has already been vigorously pursued in a slightly di�erentformalism by G. Kuperberg who has obtained some of the most beautifulskein theories beyond the HOMFLY and Kau�man ones - see [?℄.A highly desirable level of skein-theoreti understanding of a planar al-gebra P is to have a list of labelled k-tangles whih form a basis of Pk, anda set of skein relations whih allow an algorithmi redution of any labelledtangle to a linear ombination of basis ones. The list of tangles should benatural in some sense. Having a minimal number of internal diss is probablya useful requirement for basis tangles. In the HOMFLY ase suh a basisis indexed by permutations of a set of k points and the redution algorithmis essentially that used in the Heke algebra of type An. In the Kau�man(or BMW) ase the basis is indexed by all partitions of a set of 2k pointsinto subsets of size 2 and the redution algorithm is essentially that usedto alulate the Kau�man polynomial. Kuperberg has obtained a beautifuluni�ed skein theory for knot invariants obtained from rank 2 Lie algebras.One may obtain skein-theoreti ontrol of a planar algebra with somewhatless than the knowledge of the previous paragraph. If we are dealing with a
C∗-algebra with positive de�nite partition funtion then it su�es, in prin-iple, to know an algorithm to ompute the partition funtion of 0-tangleslabelled with generators and their stars. For then to see if a linear ombi-nation x of labelled tangles is zero one an simply apply the algorithm toeah term in x∗x and take the sum. This may be an aeptable situation butit is not ideal. For instane if we look at the Temperley-Lieb algebra when
δ is 2 cos π

n
, the partition funtion an be omputed with the usual formulabut we know that the C∗-planar algebra is obtained by taking the quotientby the relation that pn = 0. Expliit knowledge of pn has proved ruial infurther developments of the theory, partiularly appliations to invariants of49



three-dimensional manifolds.We would like to have suh a theory for the C∗-planar algebras withprinipal graphs E6 and E8 and our diagrammati proof of the existene ofthese planar algebras represents a step in that diretion. The planar algebrasare singly generated by the elements ψ whih are almost uniquely de�ned bythe relations saying that ψ is a lowest weight vetor for a spei� TL-module,whih may be onsidered as skein relations. The all-important relation of?? is then a further skein relation. Let us all that relation "nul". Nulwas almost su�ient to provide an algorithm for reduing planar 0-tanglesto salar multiples of the identity by immediately reduing the number ofinternal labelled diss if there is a pair of suh diss onneted by a string. Infat this did not quite work in two ways:�rst, we were fored to use knowledgeof a ψ ourring in a partiular planar algebra, and seond, we were unableto simplify diretly a tangle with two internal diss onneted by a singlestring. However, at the end of the day it did turn out, in the ase of E8that the following relations on ψ are su�ient to algorithmially alulatethe partition funtion of a labelled 0-tangle, where all onstants are as in ??and theorem ??:a) ψ ∈ ker(ǫ1) ∩ ker(ǫ2)b) ψ∗ = ψ and 〈ψ, ψ〉 = 1) ρ(ψ) = ωψd) ∑d
j=0 η

jρj(ε2(ψ)) = κ
∑d

j=0 η
jρj(ε3(ψ))e) ψ2 = Aψ +Bp5Thus the above relations an be thought of as a presentation of the E8planar algebra in a C∗ sense.We hope we have motivated two further problems.(i) For eah k �nd a list of k-tangles labelled by ψ whih give a basis for

Pk.(ii) Find a �nite set of skein relations giving an algorithm for redution of agiven tangle to one in the list of (i).We are a long way from solving problem (i) but we would like to pointout in this regard a way in whih E8 is signi�antly more ompliated than
E6. We had to work quite hard to obtain relations for E8 whih su�ed toalulate the partition funtion of 0 − tangles. It would have been trivialif we ould have shown that the tangle Q9,1(ψ, ψ) was in fat in the linearspan of tangles with at most one internal dis labelled ψ. Nothing we haveshown disallows this possibility but we will see that it is not true, althoughthe orresponding statement for E6 is orret. (So a basis of tangles for50



E6 exists with no strings onneting the internal labelled diss.) We willprove these assertions by a ounting argument whih will require a littlemore knowledge of dimensions of TL-modules on the one hand and a littlemore skein theoreti arguments on the other. We begin with the TL-moduleformulae. Reall from the proof of theorem that the annular Temperley Liebalgebra ATLk ontains two opies TLa2k and TLb2k of the ordinary TemperleyLieb algebra TL2k as in theorem ??.Theorem B.1 Suppose that Hk,ω is an irreduible Hilbert TL-module of low-est weight k and that dimHk,ω
m =

(
2m

m− k

)
− 1. Then for n ≥ m, as a TLa2nand a TLb2n module Hk,ω

n is a diret sum of irreduible TL2n-modules V j
2n for

j = 2k, 2k + 2, ..., 2m− 2.Proof. The result will follow from fat ?? and the following assertion:"If Hk,ω
n ontains neither the trivial representation of TLa2n nor that of TLb2nthen Hk,ω
n+1 ontains neither the trivial reprsentation of TLa2n+2 nor that of

TLb2n+2."This assertion is not di�ult. To say that a vetor γ is in the trivial rep-resentation of TLa2n+2 is to say that Fi(γ) = 0, and hene ǫi(γ) = 0, for
i = 1, 2, .., 2n + 1. Moreover ǫ2n+2(γ) = 0 sine some power of ρ appliedto it is in the trivial representation of TLb2n. Thus suh a γ would be in⋂
i=1,..,2n+2 ker(ǫi) and thus zero sine Hk,ω is irreduible (see ??).Now let m0 be the smallest integer for whih Hk,ω

m0
has dimension lessthan the generi value. Then for n > m0 the same is true by fat ?? and theredution proedure of theorem ??. Thus m = m0 and Hk,ω
m ontains neitherthe trivial representation of TLa2m nor that of TLb2m by a dimension ount.Thus for n ≥ m the redution proess to previous TLa algebras shows thatthe only TLa modules allowed are those listed, and that they all our.

�Note that in the above theorem δ < 2 so the V j
2n do not neessarily havetheir generi dimensions.We an now prove the assertions made above about minimal tangles forthe E6 and E8 planar algebras.Theorem B.2 The planar algebra P of E6 is linearly spanned by tangles la-belled by a single element in whih no two labelled internal diss are onnetedby a string.Proof. Just as for E8 it is lear that P is generated as a planar algebra by alowest weight vetor ψ for the TL-module V 3,ω so the theoremwill follow from51



the assertion that Q5,1(ψ, ψ) (see ??) is in the TL-module generated by ψ.But to see this we need only show that dim(H3,ω
5 )+dim(Hδ

5) = dim(P5). Butsine the Coxeter number of E6 is 12, all ordinary irreduible Temperley-Liebrepresentations ourring have their generi values. In partiular dim(Hδ
5) =

42 and by theorem ?? dim(H3,ω
5 ) =

(
10
2

)
−

(
10
1

)
= 35. And the dimension of

P6 is 77. �Theorem B.3 For E8, with notation as in ??, Q9,1(ψ, ψ) is not in the linearspan of the TL-submodules Hδ and H5,ω.Proof. We know that ψ generates a planar algebra P with prinipal graph
E8. The Coxeter number of E8 being 30, all ordinary Temperley-Lieb rep-resentations ourring have their generi values so dim(Hδ

9) = 4862 and
dim(H5,ω

9 ) = 2244 by ??.Thus there is a tangle with at least 2 internal diss, labelled ψ whih isnot in the linear span of Hδ
9 and H5,ω

9 . In fat Q9,1(ψ, ψ) must be suh atangle sine otherwise any tangle with a string onneting two internal disslabelled ψ ould be written as a linear ombination of suh tangles withoutstrings onneting internal diss labelled ψ, and any 9-tangle of this form isin H5,ω
9 or Hδ

9. �So, unlike E6, the planar algebra of E8 does not admit a basis of labelledtangles with no strings onneting internal diss.Referenes[1℄ J.Bion-Nadal, Subfator of the hyper�nite II1 fator with Coxeter graph
E6 as invariant. J. Operator Theory 28,(1992),27-50.[2℄ D. Bish and V.F.R. Jones,Singly generated planar algebras of smalldimension, Duke Math. Journal 101,(2000), 41�75[3℄ D.Bish and V. Jones Algebras assoiated to intermediate subfators.Inventiones Math. 128,(1997), 89-157.[4℄ O.Bratteli Indutive limits of �nite dimensional C∗-algebras. Transa-tions AMS 171, (1972), 195�234.[5℄ J.H. Conway An enumeration of knots and links, and some of theiralgebrai properties.Computational Problems in Abstrat Algebra (Pro.Conf., Oxford, 1967) (1970) 329�358[6℄ D.Evans and Y.Kawahigashi Quantum symmetries on operator algebrasClarendon Press, Oxford (1998).52



[7℄ F.M. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter graphs andtowers of algebras, Springer-Verlag, 1989.[8℄ R.Graham, D.Knuth and O. Patashnik Conrete Mathematis(seondedition) ,Addison Wesley, (1994).[9℄ J.J. Graham and G.I. Lehrer,The representation theory of a�ne Tem-perley Lieb algebras,L'Enseignement Mathématique 44(1998),1�44.[10℄ U. Haagerup Prinipal graphs of subfators in the index range 4 <
[M : N ] < 3 +

√
2 in: "Subfators", World Sienti�, Singapore-NewJersey-London-Hong Kong (1994) 1�39.[11℄ M. Izumi On �atness of the Coxeter graph E8., Pai� Math. Journal166,(1994),305-327.[12℄ V.F.R. Jones, Index for subfators, Invent. Math 72 (1983), 1�25.[13℄ , Planar Algebras, I, NZ Journal Math, to appear.[14℄ ,A quotient of the a�ne Heke algebra in the Brauer algebra.,L'Enseignement Mathematique 40(1994),313-344.[15℄ .The planar algebra of a bipartite graph. In Knots in Hellas '98World Sienti�, (2000), 94�117.[16℄ V.F.R. Jones and V.S.Sunder,Introdution to SubfatorsLMS leturenote series 234(1997)[17℄ L.Kau�man, State models and the Jones polynomial. Topology26,(1987),395-407.[18℄ G. Kuperberg Spiders for rank 2 Lie algebras, Commun. Math. Phys.180(1996),109�151.[19℄ J.P. May De�nitions: operads, algebras and modules, ContemporaryMathematis 202(1997),1�7.[20℄ A.Oneanu Quantized group, string algebras and Galois theory for alge-bras in Operator algebras and appliations, vol. 2 L.M.S leturenote series, 136 , (1987), 119�172.[21℄ S.Popa,An axiomatization of the lattie of higher relative ommutants,Invent. Math 120(1995),427�445.53


