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1 Introduction

Ocneanu noted that the data for what is now known as a Turaev-Viro type
TQFT is supplied by a subfactor N of �nite index and depth of a II1 factor
M . One takes all the irreducible bimodules arising in the decomposition of
the tensor powers, in the sense of Connes ([3]), of the Hilbert space L2(M)
viewed as an N−N bimodule, or, in Connes' terminology, a correspondence.
(We will use the term correspondence systematically to di�erentiate between
these and purely algebraic bimodules over algebras.) These can be N −
N, N−M, M−N and M−M correspondences. To get a 3-manifold invariant
one starts with a triangulation and assigns in an arbitrary way M or N to
the vertices, appropriate correspondences to the edges connecting vertices
and intertwiners between the three correspondences around a face. Each 3-
simplex then de�nes a scalar by a clever composition of the intertwiners on
its boundary. One then multiplies these scalars over all the simplices and
sums over all ways of assigning M , N , bimodules and intertwiners to obtain
the invariant of the three manifold.

It is natural to ask the following questions about this procedure:
(i) Does one have to introduce Hilbert spaces and the Connes tensor prod-
uct or is the purely algebraic decomposition of tensor powers of M over N
enough?
(ii) Might there not be more than 2 factors involved, with correspondences
between all of them?

Problem (i) is a subtle problem and easily overlooked since intertwiners
between bimodules preserve bounded vectors. In the simplest case of L2(M)
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it is of course equivalent to the algebraic simplicity of a II1 factor. In this
paper we shall answer question (i) by showing that the purely algebraic de-
composition is exactly the same as the L2 one. The main technical result
will be Popa's theorem on relative Dixmier averaging - [10]. In recent work
on the structure of intermediate subfactors of �nite index of a II1 factor ([6])
we repeatedly used the decomposition of a II1 factor as a bimodule over a
�nite index subfactor. Having to go back and forward between these bimod-
ules and their L2-closures was awkward and left open such questions as the
strong closedness of products of intermediate subfactors. These di�culties
are removed by the results of this paper.

Thus unitary TQFT's can be obtained as categories of bimodules no more
exotic than both left and right) �nitely generated projective bimodules over
a �xed algebra discovered by Murray and von Neumann in the 1930's!

Question (ii) was well understood and investigated by Ocneanu who intro-
duced the concept of a "maximal atlas" for some kind of largest compatible
collection of factors and bimodules. One can also ask if the introduction of
another subfactor of M can lead to a larger system of bimodules. This leads
directly to the study of two subfactors which we begin here.

2 Preliminaries

Let P and Q be II1 factors. A P −Q correspondence PHQ is a Hilbert
space H togehter with normal commuting left and right actions of P and Q
respectively (see [3]). If ξ ∈ H, p ∈ P, q ∈ Q, pξq will be the result of p and
q acting on ξ. The correspondence will be called bi�nite if both the left and
right Murray -von Neumann dimensions dimPH and dimQH are �nite.

For a II1 factor P on a Hilbert space H, a vector ξ ∈ H is called bounded
if the map p 7→ pξ from P to H is bounded when P is given its L2 norm. We
will write H0 for the subspace of bounded vectors. The vector subspace H0

is always dense in H and is obviously invariant under M and M ′.
It is well known and we prove it below that for a bi�nite correspondence

the bounded vectors for P and Q coincide. Thus in this case H0 is a P −Q
bimodule which we may consider purely algebraically. The notions of direct
sum and irreducibility of correspondences are obvious. Our main task will
be to show that a bi�nite correspondence H is irreducible, in the sense that
there are no closed invariant subspaces i� H0 is irreducible in the sense that
there are no invariant subspaces whatsoever.

We will begin with some simple material on bounded vectors which we
include for the convenience of the reader. See [9].

Lemma 2.0.1. The bounded vectors for M (or by symmetry) M ′ on L2(M)
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are M .

Proof. A bounded vector de�nes a bounded linear operator on M which
extends to L2.

Lemma 2.0.2. Let H be a Hilbert space with a (normal) action of the II1
factor M . Let e be a projection in M and f be a projection in M ′. Then
(i)The bounded vectors for the II1 factor pMp acting on pH are pH0.
(ii) The bounded vectors for M on qH are qH0.
(iii) If K is another Hilbert space on which M acts then (H⊕K)0 = H0⊕H0.

Proof. (i)Let ξ ∈ pH be a bounded vector for the action of pMp. It su�ces
to show that ξ is bounded for M . If m ∈ M then ||mξ||2 = ||pmpξ||2 +
||(1 − p)mξ||2. Writing 1 − p as a sum of projections ei of trace less than
that of p we see that ||mξ||2 = ||pmpξ||2 +

∑
i ||uieimξ||2 for unitaries ui with

uieiu
∗
i < p. But then uieimξ = puieimpξ and we see that there is a constant

K > 0 such that ||mξ|| < K||m||2.
(ii) Obvious.
(iii) Obvious.

Corollary 2.0.3. If M and H are as in the previous lemma and dimH < ∞
then the bounded vectors for M and M ′ coincide.

Proof. Any such H can be obtained from L2(M) by a combination of the
operations in 2.0.2. The bounded vectors and the commutants behave in
compatible ways. (Note that the bounded vectors for M ⊗Mn(C),acting on
the direct sum of n copies of L2(M) is the direct sum of the M 's.)

Corollary 2.0.4. If N ⊆ M is a �nite index subfactor and M acts on H
with dimM H < ∞,then the bounded vectors for M and N coincide.

Proof. If ξ is bounded for N it is bounded for N ′, hence it is bounded for
M ′ which means it is bounded for M .

Corollary 2.0.5. If H is a bi�nite P−Q correspondence the bounded vectors
for the actions of P and Qopp are the same.

Proof. Q de�nes a �nite index subfactor of P ′.

Lemma 2.0.6. Let H be a bi�nite P − Q correspondence and q ∈ Q be a
projection. Then
(i) The P − qQq correspondence Hq is irreducible i� H is.
(ii) The P − qQq bimodule H0q is irreducible i� H0 is.
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Proof. Property (i) follows by standard arguments on the behaviour of com-
mutants of factors under reduction by projections, or follows from the proof
of (ii).

For (ii), �rst suppose H0q is irreducible and choose non-zero elements v
and w in H0. We must show how to obtain w from v by applying �nitely
many elements of P and Q. Note that since Q is a factor we may suppose
that v ∈ H0q. Now choose a partition of the identity of the form uiqu

∗
i for

ui ∈ Q. For each i choose ak
i ∈ P and bk

i ∈ qQq with

wuiq =
∑

k

ak
i vbk

i

then
w =

∑
i

wuiqu
∗
i =

∑
i,k

ak
i vbk

i qu
∗
i

.
Now suppose H0 is irreducible. Then if v and w are in H0q, they are in

H0 so there are ai ∈ P and bi ∈ Q with v =
∑

i aiwbi. But since vq = v and
wq = w this gives v =

∑
i aiw(qbiq).

Lemma 2.0.7. If N ⊆ M is an irreducible subfactor then M is an irreducible
N −M bimodule.

Proof. Suppose x 6= 0 is an element of a sub N − M bimodule V of M .
Then xx∗ is in V . So by Popa's result in [10], for every ε > 0 there are
unitaries ui ∈ N and constants λi with ||

∑
λiuixx∗u∗i − tr(xx∗)|| < ε. For

ε su�ciently small this means that there is an invertible element in M from
which it immediately follows that V = M .

Putting it all together we have the following result:

Theorem 2.0.8. A bi�nite P −Q correspondence H is irreducible i� H0 is
an irreducible P −Q bimodule.

Proof. ( =⇒ ) Since dimP (H) dimQ(H) = [P ′ : Q], at least one of dimP (H)
and dimQ(H) is ≥ 1. By passing to the opposite correspondence if necessary
we may suppose dimP (H) ≥ 1. Choosing a projection q of the appropriate
trace in Q we have that Hq ∼= L2(P ) as a P -module. Then pQp may be
identi�ed with a subfactor M of JPJ , and Hq is a P −JMJ correspondence
which is irreducible by 2.0.6. This means that the subfactor JMJ ⊆ P is
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irreducible and so by 2.0.7 is (Hq)0. Hence by 2.0.6 H0 is irreducible as a
P −Q bimodule.

(<=) The bounded vectors in a proper subcorrespondence of H would be
a proper sub-bimodule of H0.

Corollary 2.0.9. If H is a bi�nite P−Q correspondence and ei, i = 1, 2, ..., n
is a partition of unity consisting of minimal projections in the (�nite dimen-
sional) von Neumann algebra P ′∩Q′, then each ei(H0) is an irreducible P−Q
bimodule and H0 = ⊕iei(H0).

Corollary 2.0.10. Let H be a bi�nite P −Q correspondence and V be any
sub P −Q bimodule of H0. Then the Hilbert space closure V of V is a P −Q
correspondence whose bounded vectors are precisely V .

Proof. Since V is a bi�nite correspondence, decompose it according to the
previous corollary and observe that for each i, ei(V ) is a sub-bimodule of
the irreducible bimodule ei(V )0. If any of these sub-bimodules were zero, V
would not be dense in V .

Proposition 2.0.11. If P and Q are �nite index subactors of M then the
bounded vectors in the P −Q correspondence L2(M) are M .

Proof. Follows from 2.0.4

Corollary 2.0.12. Let P and Q be �nite index subfactors of the II1 factor
M . Then any sub P − Q bimodule of M is weakly closed and equal to the
bounded vectors in the bi�nite correspondence given by its L2 closure.

Proof. Follows immediately from previous results.

The next result is relevant to [6].

Corollary 2.0.13. Let P and Q be �nite index subfactors of the II1 factor
M . Then if V ⊆ M and W ⊆ M are P − Q bimodules then V W is weakly
(hence strongly) closed.

3 Pairs of subfactors.

A pair P, Q of subfactors of a II1 factor M can be thought of as a �quanti-
sation� of the notion of a pair of closed subspaces of a Hilbert space. The
complete classi�cation of such subspaces is well known and has two parts-one
combinatorial and one spectral. Let us brie�y review it (for a complete refer-
ence see [13]). Suppose V and W are closed subspaces of H with orthogonal
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projections eV and eW respectively.

Combinatorial part:
Some of the closed subspaces

V ∩W, V ∩W⊥, V ⊥ ∩W, V ⊥ ∩W⊥

are zero. Since they are mutually orthogonal the problem breaks up into
each subspace and the orthogonal complement HG of all of them. The com-
binatorial part of the invariant is just the set of these subspaces which are
zero.

On HG the two closed subspaces are said to be in "general position"
and using the polar decomposition of the operator eV eW we �nd a direct

sum decomposition of HG for which, as matrices, eV =

(
1 0
0 0

)
and eW =(

a
√

a(1− a)√
a(1− a) 1− a

)
for some selfadjoint a, 0 ≤ a ≤ 1 with neither

0 nor 1 as an eigenvalue. (By analogy with the case of one-dimensional
subspaces the angle operator between V and W is that positive operator θ
such that cos2θ = eV eF eV .

Knowledge of a is equivalent to knowledge of V and W so the spectral
part of the classi�cation of pairs of closed subspaces is equivalent to the
classi�cation of bounded self-adjoint operators on Hilbert space.

Second quantisation is a functor taking Hilbert spaces to algebras of op-
erators on Hilbert spaces thus the (second) quantisation of subspaces will
give certain subalgebras of operator algebras. The simplest of operator alge-
bras are factors so the simplest quantised subspace problem is the study of
subfactors. In general subfactors do not arise as quantised subspaces so we
can think of the study of subfactors as a (second) quantisation of the study
of subspaces. The simplest non-trivial situation for subfactors is when both
factors are II1 factors and (rather simple) examples arise immediately from
fermionic second quantisation of subspaces.

Here we propose the study of pairs of subfactors of a II1 factor as a
(second) quantisation of the study of pairs of closed subspaces. The problem
will once again break up into a "combinatorial" and a "spectral" part but
both are considerably more complicated.

Several papers can be considered precursors to this idea. First is the pa-
per [14] where the angle between subfactors is introduced as the spectrum of
the angle operator of the subfactors viewed as Hilbert subspaces and several
examples are calculated including those from fermionic second quantisation.
If �niteness of the index of a subfactor is taken as the analogue of �nite
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codimension of a subspace then an entirely new situation arises in the sub-
factor setting, namely the intersection of two �nite index subfactors can be
of in�nite index. It was shown in [8] that this is the case i� the spectrum
of the angle operator is in�nite. If we suppose that the intersection of two
subfactors is a �nite index irreducible subfactor then we are faced with many
constraints. This was �rst looked at in [15] where the interesting question of
the possibilities for the lattice of intermediate subfactors was posed (see also
[1]). More general rigidity results were obtained in [6],[5].

Here we assume only that P and Q are �nite index subfactors of the II1
factor M .

De�nition 3.0.14. The combinatorial invariant of P and Q is the isomor-
phism class of the chain of �nite index subfactors P ⊆ M ⊆< M, eQ >
(where < M, eQ > is the basic construction of [7] for the subfactor Q ⊆ M .

Notes:
i) For simplicity we have chosen to include the whole subfactor chain as

the invariant although the isomorphism class of M itself for instance makes
it not entirely combinatorial. We are really thinking of the standard invari-
ant/planar algbera for the subfactor P ⊆< M, eQ >, with the privileged
biprojection onto M , as the combinatorial part, but this would take a little
formalising, and the connection between this and the spectral invariant is
more clear with the above de�nition.

ii) The simplest interesting instance of such a pair is when both P and Q
are �xed point algebras for actions of �nite groups on M . The combinatorial
invariant is then a Bisch-Haagerup subfactor as in [2].

The di�erence between isomorphism of the pair (P, Q) and equality of
their combinatorial invariants is made clear by the following:

Lemma 3.0.15. Let P and Q be von Neumann subalgebras of M . If u ∈ M
is a unitary then x 7→ JuJxJu∗J from B(L2(M)) to itself restricts to an
isomorphism from the basic construction < M, eQ > to < M, euQu∗ > which
is the identity on M .

Proof. We have JuJ(JQJ)′Ju∗J = (JuQu∗J)′, and JuJ commutes with
M .

Another way of seeing the same thing is:

Lemma 3.0.16. Let P and Q be von Neumann subalgebras of M . Then if
u ∈ M is a unitary, the map x 7→ xu de�nes a unitary on L2(M) which
intertwines the P − Q and P − u∗Qu bimodule structures given by left and
right multiplication.
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Thus the discrete invariant for (P, Q) is invariant under arbitrary inner
perturbations of Q, with P �xed.

Moreover we have the following:

Lemma 3.0.17. If (P, Q) and (P1, Q1) have the same combinatorial invari-
ant then (P1, Q1) is isomorphic to (P, uQu∗) for some unitary u ∈ M .

Proof. We may identify P ⊆ M ⊆< M, eQ > with P1 ⊆ M ⊆< M, eQ1 >
so that Q1 is the intersection with M of the commutant in < M, eQ > of
eQ1 . But there is a unitary in < M, eQ > with ueQu∗ = eQ1 . By [11]
we may suppose there is a v in M with veQv∗ = eQ1 and taking conditional
expectations onto M we see that v is unitary. But if x ∈ M then x commutes
with veQv∗ i� v∗xv commutes with eQ and so i� v∗xv ∈ Q. Thus vQv∗ =
Q1.

The proof of 3.0.17 in fact proves the following:

Lemma 3.0.18. Let N ⊆ M ⊆< M, eN > be a basic construction of �nite
factors. Then if α ∈ Aut(< M, eN >,M), there is a unitary uα ∈ M such
that α(N) = uαNu∗α.

Let N (N) be the normaliser of N in M . The space of all unitary conju-
gates of N in M is obviously U(M)/N (N). The action
of Aut(< M, eN >,M) on this space is clearly

α(vN (N)) = α(v)uαN (N)

(with uα as above).
Returning to a pair (P, Q) of subfactors we see that another isomorphic

pair determines and is determined by an element in U(M)/N (Q) every time
its combinatorial invariant is identi�ed with that of (P, Q). Since two such
identi�cations di�er by an element of Aut(< M, eQ >,M,P ) we obtain the
following:

Theorem 3.0.19. Given �nite index subfactors (P, Q) of M , the set of all
other such pairs with the same combinatorial invariant is given by the set of
orbits for the action of Aut(< M, eQ >,M,P ) on U(M)/N (Q).

If the element α ∈ Aut(< M, eQ >,M,P ) is inner when restricted to M
then it is given by conjugation by an element uα ∈ N (P ). The action of
α on U(M)/N (Q) is then given by left multiplication by uα. In particular
of N (P ) de�nes a normal subgroup of Aut(< M, eQ >,M,P ) acting by left
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multiplication so the set of isomorphism classes of pairs with given combina-
torial invariant is given by the orbits of Aut(< M, eQ >,M,P ) on the double
coset space

N (P )\U(M)/N (Q).

Should M not have any outer automorphisms this double coset space is
thus a complete description of pairs of subfactors with given combinatorial
invariant. However although theoretically nice, one does not necessarilly
know much about even this double coset space. The very simplest case is in
�nite dimensions with P = Q and M are all matrix algebras. The normaliser
of P is then the cartesian product U(m) × U(n) for suitable m and n and
we are looking at its double coset space. A II1 factor may also fail to have
outer automorphisms ([12]) and if so N (P )\U(M)/N (Q) may be considered
in the simplest possible situation when P = Q and M is just the 2x2 matrices
over P . Not much seems to be known about the double coset space even in
that case. Note that the spectrum of the angle operator between P and Q is
clearly an isomorphism invariant.

Thus the "spectral" side of the classi�cation of pairs of subfactors looks
rather di�cult to analyse. There are, however many simple questions one
may ask, especially about the in�uence of the combinatorial invariant on the
spectral one. The following is perhaps the most obvious:

�If P ⊆ JQ′J is of �nite depth does there exist a unitary u ∈ M such
that P ∩ uQu∗ is of �nite index?�

It is even possible that the converse is true also if we suppose that the com-
binatorial invariant is an irreducible subfactor. Some evidence for a positve
answer is given by the (obstructionless) Bisch-Haagerup subfactors for which
it is indeed if and only if:

Theorem 3.0.20. Let M be a II1 factor with G and H �nite groups of outer
automorphisms. Suppose the group generated by G and H in Out(M) lifts
to Aut(M). Then there is a unitary u ∈ M such that MG ∩ u(MH)u∗ is of
�nite index (in the sense of Pimsner-Popa, [11]) i� the subfactor MG ⊆<
M, eMH > is of �nite depth.

Proof. By [2] the subfactor is of fnite depth i� the group K generated by G
and H in the quotient Aut(M)/Int(M) is �nite.

Suppose �rst that such a u exists. Then the group generated by G and
(Adu)H(Adu∗) is necessarily �nite modulo inner automorphisms since the
�xed point algebra for a group which is in�nite modulo inner automorphism
is necessarily of in�nite index.

To prove the converse we will use the following result from nonabelian
cohomology which is no doubt well known. We give a proof here for the sake
of the reader.

9



Lemma 3.0.21. Let G be a �nite group of outer automorphisms of a II1 fac-
tor M . If g 7→ ug and g 7→ vg are unitaries satisifying ugg(uh) = µ(g, h)ugh

and vgg(vh) = µ(g, h)vgh for some circle-valued 2-cocyle µ (so that g 7→
Ad ugg and g 7→ Ad vgg are also outer actions of G), then there is a unitary
w ∈ M with (Ad w)Adugg(Ad w∗) = Ad vgg for all g ∈ G.

Proof. We will use Connes' 2x2 matrix trick. For each g ∈ G let Ug =(
ug 0
0 vg

)
be unitaries in the II1 factor M ⊗M2(C). Then (Ad Ug)g ⊗ id

is an outer action of G on M ⊗ M2(C). The projections

(
1 0
0 0

)
and(

0 0
0 1

)
are of equal trace in the �xed point algebra for (Ad Ug)g ⊗ id,

which is a II1 factor. Thus there is a unitary w ∈ M so that

(
0 w∗

0 0

)
is

�xed by (AdUg)g ⊗ id. But this means ug g(w∗)v∗g = w∗ for all g ∈ G. This
inmediately implies the result.

We now return to the proof of theorem 3.0.20. Finite depth of the Bisch-
Haagerup subfactor implies by [2] that the group K generated by G and
H in Out(M) is �nite. By our assumption there is an action α : K →
Aut(M) and unitaries ug for g ∈ G and vh for h ∈ H with g = Adugαg

and h = Ad uhαh.Thus there are two-cocycles µ(g1, g2) and ν(h1, h2) with
ug1g1(ug2) = µ(g1, g2)ug1g2 and vh1h1(vh2) = ν(h1, h2)vh1h2 . The �xed point
algebra MK for the action α is a type II1 factor so we may choose, in MK ,
commuting projective unitary representations wg and th of G and H with
cocycles µ and ν respectively. By the previous lemma we may conjugate G
and H by an inner automorphism Ad x so that (Ad x)g(Adx∗) = (Ad wg)g.
This conjugation does not change the 2-cocycle for the inner perturbation of
H so we may now conjugate just H by some Ady so that (Ad y)h(Ad y∗) =
(Ad th)h. But then the �xed point algebra for (Ad wg)g and (Ad th)h contains
the relative commutant in MK of the �nite dimensional algebra generated
by the wg and the th. It is thus of �nite index in M .

The question above of when one subfactor can be perturbed by an inner
automorphism so that the intersection of both is of �nite index leads to a
little insight into the spectral invariant in some cases, the easiest with any
bite being the case where M is the crossed product of P by a period 2 outer
automorphism and P = Q. In this case we use the notation that elements of
M are of the form a + bu, with a, b ∈ P and u being a self-adjoint unitary in
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N (P ) orthogonal to P . Then the conditional expectation E of M onto P is
given by E(a + bu) = a.

Proposition 3.0.22. With P ⊂ M of index 2 as above and w = a + bu a
unitary in M , Q = uPu∗, the angle operator EEQE is

(EAd(w)EAd(w∗)E)(x+ yu) = aa∗xaa∗ + bα(a∗xa)b∗ +aα(b∗xb)a∗ + bb∗xbb∗

Proof. A simple calculation.

Lemma 3.0.23. If a, b as above are in a �nite dimensional ∗-subalgebra D
of P with α(D) = D then [M : P ∩Q] < ∞.

Proof. Let D be the crossed product of D ⊗ Dopp by Z/2Z with Z/2Z act-
ing by α ⊗ αopp. Then the algebra generated by {(left multiplication by
d1)⊗(right multiplication by d2)} for di ∈ D, and α⊗ αopp is a �nite dimen-
sional ∗-subalgebra of End(P ). This algebra contains EEQE by the previous
calculation so it must have �nite spectrum. By [8] we are done.

Corollary 3.0.24. If P is hyper�nite, the set of all unitaries u ∈ M such
that [M : P ∩ uPu∗] < ∞ is strongly dense in the unitary group of M .

Proof. By [4] any two outer actions of Z/2Z are conjugate and it is a simple
matter to build one with an increasing dense sequence Dn of invariant �nite
dimensional ∗-subalgebras of P . Then the sequence of algebras generated by
Dn and u are dense in in M and hence their unitary groups are dense in that
of M .

Similar results hold when M is the algebra of n× n matrices over P .
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