In these questions remember that you may only assume things we have proved in class. Pay attention to the details!

1) Let c and s be differentiable functions from \mathbb{R} to \mathbb{R} satisfying $c(0) = 1, s(0) = 0, s'(x) = c(x) \quad \forall x$ and $c'(x) = -s(x) \quad \forall x$. Show that $c(x) = \cos x, \quad s(x) = \sin x \quad \forall x$.

2) Show that $\cos(A + B) = \cos A \cos B - \sin A \sin B$ and $\sin(A + B) = \sin A \cos B + \cos A \sin B$.

3) Show that $\cos t = 0$ for some unique t between 1 and 2 and $\cos x > 0$ for $x \in (-t, t)$.

Define the real number π by $\pi = 2t$ where t is as in question 2.

4) Show that $\cos(\pi/2 - x) = \sin x, \sin(\pi/2 - x), \sin(x + \pi) = -\sin x$ and $\cos(x + \pi) = -\cos x$.

5) Show $\exp(x)$ is a bijective function from \mathbb{R} to $(0, \infty)$. Let $\log x$ be the inverse function to \exp. Show that \log is differentiable and $\log' x = \frac{1}{x}$.

6) Show that for $-1 < x < 1$,

$$\log(1 - x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$$

7) Let $f : [0, 2] \to \mathbb{R}$ be continuous and differentiable in $(0, 2)$ and $f(0) = 0$. Suppose $-3 < f'(x) < 4$ for $x \in (0, 2)$. Show

$$-6 < f(2) < 8$$