The Schroeder-Bernstein Theorem

Suppose

\[H : Z \to Z \]

is a 1-to-1 function. For each \(a \in Z \), the orbit of \(a \) is the smallest subset of \(Z \) which is closed under \(H \) and which contains the point \(a \). The next three easy lemmas refer to \(H \) and \(Z \). For each \(a \in Z \), we let \(O_a \) denote the orbit given by \(a \).

Lemma 1. Suppose \(a, b \in Z \) and let \(O_a \) and \(O_b \) be the orbits given by \(a \) and \(b \) respectively. Then either \(O_a = O_b \) or \(O_a \cap O_b = \emptyset \).

Proof. Exercise. \(\square \)

Definition 2. Let \(O_a \) be the orbit given by \(a \). A point \(b \in O_a \) is an Eve point if \(b \) is not in the range of \(H \).

An orbit cannot have two different Eve points.

Lemma 3. Suppose \(a \in Z \) and \(O_a \) is the orbit given by \(a \). If \(O_a \) has an Eve point then that point is unique.

Proof. Exercise. \(\square \)

Lemma 4. Suppose \(a \in Z \) and \(O_a \) is the orbit of \(a \) given by \(H \). Let \(H_a \) be the restriction of \(H \) to \(O_a \) so that

\[H_a : O_a \to O_a \]

Then \(O_a \) has no Eve point if and only if \(H_a \) is a bijection from \(O_a \) to \(O_a \).

Proof. Exercise. \(\square \)

Example

(1) Let \(Z = \mathbb{R} \) and let \(H \) be the function \(H(x) = x^3 \). Find all the \(a \in \mathbb{R} \) such that \(O_a \) is finite. Does every orbit have an Eve point?

(2) Let \(Z = [0, \infty) \) and let \(H \) be the function \(H(x) = x^2 \). Does every orbit have an Eve point? Find all the finite orbits.

(3) Let \(Z = [0, \infty) \) and let \(H \) be the function \(H(x) = e^x \). Is any orbit finite? Does any orbit have an Eve point? \(\square \)
Theorem 5 (Schroeder-Bernstein). Suppose that $|X| \leq |Y|$ and $|Y| \leq |X|$. Then $|X| = |Y|$.

Proof. Let $f : X \rightarrow Y$ and $g : Y \rightarrow X$ be 1-to-1 functions. We must produce a bijection, $h : X \rightarrow Y$.

Let $F : X \rightarrow X$ be the function $g^{-1} \circ f$ and let $G : Y \rightarrow Y$ be the function $f^{-1} \circ g$. Thus F is a 1-to-1 function from X to X and G is a 1-to-1 function from Y to Y.

For each $a \in X$, let O^X_a be the orbit of a given by F and for each $b \in Y$, let O^Y_b be the orbit of b given by G.

Note:

(1.1) For each $a \in X$, for each $c \in O^X_a$, $f(c) \in O^Y_{f(a)}$.

(1.2) For each $b \in Y$, for each $d \in O^Y_b$, $g(c) \in O^X_{g(b)}$.

Note:

- Suppose $a \in X$. Then O^X_a has no Eve point if and only if $O^Y_{f(a)}$ has no Eve point.

Similarly,

- Suppose $b \in Y$. Then O^Y_b has no Eve point if and only if $O^X_{g(b)}$ has no Eve point.

Fix $a \in X$. There are essentially three key observations (verify them!).

(I) Suppose O^X_a has no Eve point. Then the restriction of f to the orbit O^X_a is bijection with the orbit $O^Y_{f(a)}$.

The next two key observations concern the situation where O^X_a has an Eve point. Let c be the (unique) Eve point of O^X_a.

(II) If c is in the range of g then g^{-1} gives a bijection of O^X_a with $O^Y_{f(a)}$.

(III) If c is not in the range of g then f gives a bijection of O^X_a with $O^Y_{f(a)}$.

2
Now we can easily define the desired bijection
\[h : X \to Y \]
by defining \(h \) on each orbit \(O^X_a \) where \(a \in X \).

(4.1) If \(O^X_a \) has no Eve point then for each \(d \in O^X_a \), \(h(d) = f(d) \).

(4.2) If \(O^X_a \) has an Eve point and that Eve point is in the range of \(g \) then for each \(d \in O^X_a \), \(h(d) = g^{-1}(d) \).

(4.3) If \(O^X_a \) has an Eve point and that Eve point is not in the range of \(g \) then for each \(d \in O^X_a \), \(h(d) = f(d) \).

It follows that \(h \) is a bijection from \(X \) to \(Y \) (show this!). \(\square \)