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Abstract

Suppose k is an arbitrary field (of any characteristic) and X is a
smooth complete toric variety, which is a compactification of the torus
T := (Gm)n. Let S := (S1)n be a topological torus on the Langlands dual
lattice to T . The N -power map PN : T → T extends to a ramified power
map PN : X → X, giving a tower of spaces X(N) over X all isomorhpic
to X. The “perfectoid completion”, Xperf := lim

←
X(N) (originally defined

in a local context, but for toric varieties still defined over k) has non-finite
type scheme structure, first studied (in a local context) by Scholze in the
context of perfectoid spaces. The space Xperf “compactifies” the com-
pleted universal cover T perf of the torus T/k, and in particular has action
by the geometric Galois group, ΓT of T , with quotient stack Xperf/ΓT
“compactifying” T (= T perf/ΓT ) in a Galois-compatible way. The function
sheaf O(Xperf) is equipped with a unipotent boundary ideal, a∂ , and us-
ing the theory of “almost mathematics” of Faltings and Gabber-Ramero
we define a category of “almost quasicoherent sheaves” Qcoha(Xperf), and
its ΓT -equivariant version, Qcoha(Xperf)ΓT . We show that, regardless of
the compactification X of the torus, the equivariant almost quasicoherent
category Qcoha(Xperf)ΓT is derived equivalent to the category Shv(S) of
all topological sheaves on S (no constructibility restrictions). Via results
of Nadler-Zaslow and others, this should be thought of as a version of
the Fukaya category of the mirror of the algebraic variety T , which is
the symplectic torus T∨ := T ∗(S). Based on this result we argue that
the derived category Db Qcoha(Xperf)ΓT (which is independent of choice
of compactification X) should be thought of as the correct compromise
between (quasi)coherent sheaves on T and compactly supported sheaves
on T , both of which are studied but have some complementary deficien-
cies in the context of mirror symmetry. We make some conjectures which
generalize this mirror symmetry statement in the wider SYZ context. By
incorporating singular support conditions on X into the equivalence, we
deduce a strong generalization of the coherent-constructible correspon-
dence conjecture of [FLTZ]. Along the way, we show that the category of
quasicoherent sheaves on X is equivalent (as an Abelian category) to the
category of sheaves on a certain Grothendieck topology Θ related to S, a
fact first observed without proof by James Dolan.
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1 Introduction

1.1 Overview and motivation
Homological Mirror Symmetry studies equivalences between derived cat-
egories associated to algebraic and differential-geometric objects. The
original formulation (due to Kontsevich, [Kontsevich]) conjectures that
to any (suitably nice) algebraic variety X one can associated a “mir-
ror” symplectic variety X∨ together with an equivalence of dg categories
Db Qcoh(X) ∼= Fuk(X∨): here Db Qcoh(X) is the derived ategory of qua-
sicoherent sheaves on X and Fuk(X∨) is the (dg enhancement) of the A∞
(idempotent completed) Fukaya category associated to X∨. In practice,
known instances of mirror symmetry are variations on this theme, with
Db Qcoh(X) and Fuk(X∨) modified in some way.

1.1.1 Mirror symmetry for the cylinder

Let C∗sym be the cylinder, viewed as a symplectic manifold with Kähler
form ω := d|z| ∧ dθ, for |z|, θ the absolute value and angle coordinates.
The mirror of C∗sym is the algebraic variety C∗alg (or, over more general
fields, Gm), with functoriality with respect to scalar multiplication making
C∗sym,C∗alg naturally into dual tori. Mirror symmetry results take the form
of the statement that a Fukaya category on C∗sym is derived equivalent to
a coherent category on C∗alg. However, since C∗sym,C∗alg are open, there is
some ambiguity to which category should be taken on either side. Namely,
on C∗sym there are two standard natural Fukaya categories. First, the com-
pact Fukaya category FukC∗sym has objects exact compact Lagrangians
L ⊂ C∗sym together with a local system. The wrapped Fukaya category,
Fukot C∗sym has objects all Lagrangians which are allowed to go to ∞,
and must be deformed to wrapp around at ∞ in a certain asymptotically
periodic way when composed. The known mirror symmetry statements
for the cylinder take the following form:

Theorem 1. 1. The (idempotent-completed dg enhancement of) the
compact Fukaya category of the cylinder C∗sym is equivalent to the de-
rived category of coherent sheaves on C∗ with bounded and compactly-
supported cohomology.

2. The (idempotent-completed dg enhancement of) the wrapped Fukaya
category of the cylinder C∗sym is equivalent to the derived category of
all coherent sheaves on C∗.

There are some problems with both categories. Namely, the compact
Fukaya category does not remember as much geometric information about
the symplectic variety C∗sym as one would like, and the wrapped Fukaya
category loses some of the finite-dimensionality and symmetry that the
ordinary Fukaya category has. Now since C∗sym is naturally a cotangent
bundle, C∗sym ∼= T ∗S1, there is a third category, defined by Nadler and
Zaslow in [?], which interpolates between the compact and wrapped ver-
sions. We call this category the microlocal Fukaya category, Fukµ(C∗sym);
its objects are Lagrangians with some conicity conditions at ∞. Conjec-
turally, such a category can be defined more generally for any symplectic
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manifold which admits a Lagrangian skeleton: for an informal definition
for Weinstein manifolds, see [?]. It is reasonable to ask now whether there
is a new coherent category of sheaves on C∗alg which is mirror symmetric
to Fukµ(C∗sym). In this paper, we define such a category, which we call
the log-perfectoid category of coherent sheaves.

1.1.2 Coherent-constructible correspondence: the Nadler-
Zaslow approach to the n-dimensional cylinder

One way to interpolate between the two different coherent categories above
(compactly supported sheaves on Gm and all sheaves on Gm) is to study
sheaves on the (unique) compactification P1 of Gm. It turns out that the
derived category of sheaves on P1 is indeed related to a certain modified
Fukaya category for the cylinder. This approach becomes more interest-
ing at higher dimensions, where the cylinder C∗sym = T ∗S1 is replaced by
(T ∗S1)n and the algebraic mirror is replaced by Gnm. Then the compact-
ification is no longer unique, and the most well-studied compactifications
are toric varieties. This gives us a whole family of flavors of mirror sym-
metry statements for (T ∗S1)n parametrized by toric varieties. As it turns
out, for each (smooth and compact) toric variety X compactifying Gnm
there is a fully faithful functor from the derived category Db(coh(X)) to
the microlocal Fukaya category, Fukµ(T ∗S1)n. The image of this functor
should then be cut out by a combinatorial boundary condition on La-
grangians in (T ∗S1)n. One very fruitful point of view on the resulting
theory originates from a very old observation of Bondal, [?], that the de-
rived category of coherent sheaves on an n-dimensional toric variety X
can be faithfully embedded in the category of constructible sheaves on
the topological torus S := (S1)n (proved by [?]). Now it follows from
[?], the category of constructible sheaves on S is equivalent to a certain
Fukaya category on T ∗S ∼= (T ∗S1)n, and boundary conditions on this
Fukaya category translate into singular support conditions (a notion im-
ported from microlocal analysis) on constructible sheaves on (S1)n. This
point of view results in a constellation of results and conjectures known as
the coherent-constructible correspondence conjectures (ccc conjectures for
short), announced with sketch of proof in an early version of this work,
[?] and proved by Kuwagaki, [?].

1.1.3 Some motivation: coherent-constructible correspon-
dence at the highly ramified limit

From now on we assume access to (possibly a variant of) the philosophy of
[?] to identify the Fukaya category of the n-dimensional symplectic torus
T ∗S with some category of topological sheaves on S itself. The fact that
toric compactifications of the torus Gnm give different full derived subcate-
gories of Constr(S) is suggestive: perhaps there is some universal, or “limit
compactification” of Gnm which sees the entire category of constructible,
or even all topological, sheaves on S. One candidate is to take the limit
of all toric varieties (which naturally form a projective system by fan
refinement), but this is not quite good enough: for example, in the one-
dimensional context, there is a unique compactification (P1) and it only
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“sees” constructible sheaves on S = S1 which are locally constant outside
the basepoint 1 ∈ S1. We can do better by extending our world from toric
varieties to toric stacks. Namely, suppose (for now) that the basefield k is
algebraically closed of characteristic 0. Then for any positive integer N ,
the group Z/N acts on both Gm and on P1 by multiplication by roots of
unity. Consider the unique étale N -fold cover G(N)

m of Gm. It is isomor-
phic to Gm, but it will be convenient for us to differentiate it notationally
to think of it as a cover of the original Gm on which we want a mirror
symmetry result. Now the map G(N)

m → Gm is the projection map induced
by factoring out the action of Z/N on G(N)

m . Let (P1)(N) (also isomorphic
to P1 but thought of as fibering over it) be the unique smooth compacti-
fication of G(N)

m . It maps to P1 with n-fold ramification at the boundary
points, 0,∞. Now we can study the quotient stack (P1)(N)/(Z/N), which
compactifies the free quotient stack G(N)

m /(Z/N) ∼= Gm. The category
of coherent sheaves on this stack will simply be the category of Z/N -
equivariant sheaves on the ramified cover (P1)(N) (isomorphic to P1). The
generalization of the coherent-constructible correspondence in this con-
text says that the derived category of sheaves on (P1)(N)/(Z/N) is derived
equivalent to the category of constructible sheaves on S1 which are locally
constant outside the N roots of unity in S1. As N → ∞, the tower of
orbifolds (P1)(N)/(Z/N) forms a projective system. One would naively
expect the category of coherent sheaves on this limit (a priori, a notion
that can be defined in many diffent ways) to be derived equivalent to the
category of sheaves “with exceptional fibers at Q/Z ⊂ S1”, which from the
point of view of constructible sheaves is a nonsense object. Miraculously,
there is a way to make sense of such a construction to get a much more
complete result.

1.1.4 Inverse systems, almost quasicoherent categories and
the main theorem

Note that given a family of surjective maps of affine varieties X0 ← X1 ←
. . . , the projective limit can be understood as an honest affine variety,
albeit not of finite type. Namely, the rings O(X0) → O(X1) → . . . are
a sequence of injective maps of commutative rings, and we can formally
define lim

←
Xi := Spec(lim

→
O(Xi)) to be the spectrum of the direct limit

of these rings. A similar result holds for group schemes, and the inverse
limit of the group schemes Z/N = Spec(k[Z/n]) is the group scheme

Z/∞ := Spec(k[Q/Z]).

This is the geometric version of the algebraic fundamental group of Gm,
and acts on the universal cover of Gm, which is lim

←
G(N)
m := Spec(k[Q])

(note that we are taking finite polynomials with exponents in Q, not
series). Similarly, the inverse limit of ramified covers (A1)(N) has an affine
limit,

(A1)(∞) := Spec k[Q≥0].

Applying this construction locally (on the upper and lower hemispheres),
we get a ramified limit (P1)(∞). Now the affine object (A1)(∞) (or, more
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often, a completion of its pro-p piece) comes up in number theory, where
one associates to it a new category of sheaves using an algebraic theory
(originally studied by Faltings, [Faltings]) called “almost mathematics”.
The map of rings k[Q≥0] → k taking a polynomial to its constant co-
efficient gives a point 0 ∈ (A1)(∞). Given a vector space V , it gives
a skyscraper sheaf δV over 0 on (A1)∞ (with k[Q≥0] action factoring
through the unit coefficient). This is a Serre subcategory, Qcoh∂ (some-
thing which is not true at any finite level), and in particular we have a
well-defined quotient category, which is known as the “almost quasico-
herent category” Qcoha((A1)(∞)) := Qcoh((A1)(∞))/Qcoh∂ . It was first
observed by Faltings that, in the context of number theory, the category
of almost quasicoherent sheaves Qcoha((A1)(∞)) is in many ways better
behaved than the category of all quasicoherent sheaves (and, for some
applications, even better than the category of coherent sheaves at any
finite stage, because the variety (A1)(∞) over a local field will be per-
fectoid). A similar category makes sense for (P1)(∞) (quotient out the
Serre subcategory of skyscraper sheaves at 0 and ∞). This category has
action by the geometric fundamental group Z/∞, and it makes sense to
consider the equivariant category, which we think of as the category of
almost quasicoherent sheaves on the orbifold,

Qcoha(P1
orb-∞) := Qcoha

(
(P1)(∞)/(Z/∞)

)
:

the “correct” inverse limit of the quasicoherent categories of (P1)(n)/(Z/n).
Our main theorem in the one-dimensional case is now, in terms of this

notation, as follows.
Theorem 2. We have an equivalence of derived categories

Db Qcoha(P1
orb-∞) ∼= Db Shv(S1),

where Shv(S1) is the category of all topological sheaves on S1.

It turns out that taking the inverse limit over all N is overkill, and
we can write down a similar statement for the tower of ramified covers
(P1)(pn) for powers of p, or any other infinite tower of this sort. In the
higher-dimensional case, the result will turn out to be independent not
only on the tower of ramified covers, but also (on the level of derived
categories) on the choice of toric compactification X of Gnm. Namely, for
any toric variety X and any integer N there is a canonical variety X(N)

over X, which is isomorphic to X and extends the map t 7→ tn : T → T
on the open orbit. This map has action by the N -torsion group (Z/N)n

in the torus. In the limit, we get a variety X(∞) which has an action by
the geometric fundamental group (Z/∞)n of T = Gnm. It also has a well-
defined category Qcoha(X(∞)) of almost-quasicoherent sheaves, which is
the Serre quotient by sheaves pushed forward from the boundary variety.
We once again write down the quotient X(∞)/(Z/∞)n := Xorb−∞ which
compactifies T , and define the category Db Qcoha(Xorb-∞) as the category
of equivariant objects in Db Qcoha(X(∞)). Now in the general case, we
have the following theorem.
Theorem 3. We have an equivalence of derived categories

Db Qcoha(Xorb-∞) ∼= Db Shv(S),
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where Shv(S) is the category of all topological sheaves on S.

(See Theorem 5 for a more precise statement).
In particular, the derived category Db Qcoha(Xorb-∞) does not depend

on the choice of compactification X of the torus. (Note however that the
Abelian category Qcoha(Xorb-∞) does depend on the specific compactifi-
cation X.)

Our proof of the coherent-constructible-correspondence in this con-
text uses the toric structure on X. But the set-up for the category
Qcoha(Xorb-∞) does not. Indeed, say U ⊂ X is any subvariety with
normal crossings (or, more generally, locally toric) boundary and with
geometric fundamental group surjecting onto the local (monodromy) fun-
damental group near any point of the boundary. Then given a cofiltration
Γ1 ← Γ2 ← . . . of the geometric fundamental group πg1(U) by finite quo-
tients, we get a sequence of covers U (1) ← U (2) ← . . . . It is not hard to
see that there is a unique extension of U (i) to a maximally ramified cover
X(i) locally of toric type. We now obtain a quasicoherent category by the
perfectoid-inspired procedure:

1. Take an inverse limit X(∞) of the X(N), viewed as a (non-finite type)
scheme and similarly view the inverse limit Γ∞ of the ΓN as a group
scheme.

2. Consider the category of “almost coherent” sheaves, defined as a quo-
tient of Qcoh(X(∞)) by sheaves pushed forward from the boundary.

3. Consider the category of Γ∞-equivariant objects in Qcoha(X(∞)).

The output of this procedure is a category Qcohlog-perf(U,X) which we
call the “log-perfectoid” category. We conjecture that this is the right
object to consider on the algebraic side in more general microlocal mirror
symmetry conjectures (when the B side involves an open variety and the
A side has a symplectic skeleton).

1.2 Coherent-constructible correspondence: his-
tory and context
A consequence of the main result of this paper is a new proof of the
coherent-constructible correspondence conjecture of [FLTZ], which should
be attributed to Tatsuki Kuwagaki, [K] (and to [FLTZ] in the equivariant
coherent case). In fact, the present paper grew out as an extension of the
draft [V] on the author’s website, which announced and sketched an ear-
lier incomplete proof of the coherent-constructible correspondence. The
author hopes to apologize for the inconvenient state of the literature this
caused. Here we sketch a brief history of the problem outside the context
of mirror symmetry.

The original paper [FLTZ] proves a general coherent-constructible cor-
respondence (from now on, “ccc”) statement in a very slightly modified
version. Namely, the action of T on X lets us introduce a new cate-
gory related to Qcoh(X): the category of torus-equivariant quasicoherent
sheaves, QcohT (X). The corresponding modification on the constructible
side turns out to be replacing the topological torus S = (S1)n with its
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universal cover S̃ (a real affine space) and the relevant singular sup-
port submanifold Λ ⊂ T ∗S by its pullback Λ̃, and Bondal’s coherent-
constructible functor from [B] can be adapted to the equivariant case.
The analogue of the coherent-constructible correspondence becomes the
“equivariant coherent-constructible correspondence”, an equivalence

Db QcohT (X) ∼= Db ConstrΛ̃ S̃. (1)

The paper [FLTZ] shows that whenX is smooth and projective, the equiv-
ariant ccc correspondence holds after imposing some finiteness conditions
on both sides. Namely, they show that

Db cohT (X) ∼= Db Constrfin
Λ̃
S̃. (2)

Here the left hand side is the category of complexes of (equivariant qua-
sicoherent) sheaves on X with coherent cohomology and the superscript
“fin” on the right means that we study complexes of constructible sheaves
which have cohomology with finite-dimensional fibers which are 0 outside
a compact set. Remarkably, the full coherent-constructible correspon-
dence can be deduced easily (see e.g. section 11 of the present paper)
from the equivariant coherent-constructible correspondence if one were
able to drop the finiteness conditions above, i.e. if one were able ot extend
the known equivalence (2) to the conjectural (1) (this is in particular the
point of view adopted in the present paper). The paper [FLTZ] introduced
the basic language of affine polyhedral cones and polytopes which have
been subsequently used in all work on toric varieties including the present
one. It would not be inaccurate to say that the proof given here for the
coherent-constructible correspondence can be boiled down to “[FLTZ] +
some considerations of derived limits at infinity” (see also [V]).

Special cases of the (nonequivariant) ccc conjecture have been worked
out in [FLTZ, Treumann, 2-dim case, SS]. A general proof (also deduc-
ing the non-equivariant ccc conjecture from the equivariant (1) above)
was first announced and sketched in the preprint [V]. This preprint used
a combination of two methods: a notion of derived descent datum and
a geometric deformation argument for deforming the fiber functor to a
polytope. The first complete proof of the result was written down in the
Kuwagaki’s paper [K], which proved a very general statement (for possi-
bly singular and stacky toric varieties) using a slightly different method.
Namely, for smooth varieties, Kuwagaki used induction from the affine
smooth case using derived glueing and desingularization, and used a con-
volution argument to control singular support (in place of the deformation
argument of [V]). A more recent paper, [Z], extended the deformation ar-
gument from [V] into another proof. The present paper grew out of a
revision of the paper [V] with the goal of incorporating the two argu-
ments of [V] into a more elegant Grothendieck-topological picture. The
derived descent method is replaced by an equivalence of (Abelian, not
derived) categories between coherent sheaves on the toric variety X and
topological sheaves on a certain Grothendieck topology Θ. The defor-
mation method is replaced by a fully faithful embedding of the category
of quasicoherent sheaves on the toric variety X into a new category of
quasicoherent sheaves on a certain “large” non-Noetherian scheme (much
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larger than X(∞)). Namely, the category Qcoha(XNov
Σ )S

∼
of “almost lo-

cal” (once again in the sense of [Faltings]’s “almost mathematics”) sheaves
with a certain equivariance condition on the toric Novikov variety XNov

Σ

associated to a toric fan Σ (what in [V] was the deformation procedure
translates in this context to applying the adjoint functor to this embed-
ding). The coherent-constructible correspondence statement for the toric
variety X now follows from a statement for this new category with no
singular support condition: namely, we prove that it is equivalent to the
category of all topological sheaves on the torus S, i.e.

Qcoha(XNov
Σ )S

∼ ∼= Shv(S).

1.3 Topos-theoretic interpretation of coherent cat-
egories
The guiding principle of the present paper is to replace algebraic cate-
gories and functors with topos-theoretic ones using (Abelian) categories
of sheaves on Grothendieck sites. (The fact that constructible sheaves on
a toric variety is a Grothendieck topos was first observed without proof
in the note [?], and interestingly, implies exotic tensor product structures
on the categories we consider.) While many of the arguments can be in-
terpreted using modern derived theory with derived glueing of categories
replacing topoi (similarly to [?]), the point of view of sheaves on sites
seems essential (or at least very convenient) for certain “analysis-style”
limit arguments: especially, for comparing categories in the “Novikov”
and “perfectoid” contexts where the relevant equivalences of Grothendieck
topologies simply falls out of the fact that Q is dense in R (see Lemma
39).

Recall that a Grothendieck topology (also known as a “site”) is a
category-theoretic extension of the notion of topological space with just
the right axioms to be able to define a sheaf condition. Grothendieck
initially introduced Grothendieck topologies (and the associated theory of
topoi) to work with étale sheaves. Recall that étale opens on a topological
manifold M are maps U → M which interpolate between the notions of
open embedding U ⊂- M and covering space M̃ -- M . Grothendieck
observed that sections of a sheaf on different étale U (defined as global
sections of the pullback) satisfy a sheaf condition with respect to “étale
covers” (surjective étale maps

⊔
Ui → X). He formalized the data of étale

opens and étale covers into the category-theoretic notion of “site” (here
called Grothendieck topology). All functorial assignments

(étale open)→ vector space

satisfying the sheaf condition with respect to étale covers are called sheaves
in the étale topology. For an algebraic variety X, one can similarly study
sheaves, either in the Zariski topology or in the étale topology (where
the étale maps U → X are also required to be algebraic). Grothendieck
observed that for smooth manifolds, sheaves in the étale topology coincide
with sheaves in the ordinary topology (with respect to open subsets and
open covers). But in the context of algebraic geometry, sheaves in the étale
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topology are in fact very different from sheaves in the Zariski topology,
and (in the case where the base field is C) are a much better approximation
(especially for doing homological algebra) to the category of topological
sheaves on the underlying space.

In section 5, we introduce a new pair of Grothendieck topologies Θ, Θ
and a pair of equivalences of (Abelian) categories

QcohT (X) ∼= Shv(Θ)

Qcoh(X) ∼= Shv(Θ).

Since coherent sheaves are fundamentally (at least locally) an algebraic ob-
ject, it is remarkable that they admit an interpretation in this topological
language, and this algebro-topological relatinoship should be understood
as a mirror symmetric phenomenon at the Abelian cataegory level: the
more so because the Grothendieck topology Θ is closely related to the
étale topology on the topological manifold S involved in the coherent-
constructible correspondence (and Θ, correspondingly, is related to the
ordinary topology on S̃).

We briefly sketch how the topologies Θ,Θ are defined, and how they
produce a mirror symmetry functor. If X is an n-dimensional toric variety
and L is an ample line bundle on X, X inherits a Kähler structure from
the projective embedding associated to the full pencil for L. Given the
Kähler structure together with the toric action gives a polytope ∆L ⊂ Rn:
the image of the moment map on X (viewed as a symplectic variety)
associated with the (real) Lie algebra action. These polytopes can be
interpreted in a more algebraic way, as the convex hulls in Rn of the
weights of (homogeneous) sections of L. The key observation which relates
QcohT (X) with topos theory is the fact that, for fixed F , the assignment
F 7→ HomQcohT (L,F) behaves in a very sheaf-like way with respect to ∆L

as we vary L. Indeed, if a collection of polytopes ∆L1 , . . . ,∆Lk happen to
cover another moment polytope ∆L , then so long as for each collection
of indices i1, . . . , ik

each intersection
⋂
j

∆(Lij ) is itself a moment polytope ∆Li1,...,id
(P1)

(something that happens in a positive density of cases), then for any
equivariant sheaf F ∈ QcohT (X) we have

the diagram Homeq(L,F)→
⊕
i

Hom(Li,F)⇒ Hom(Lij ,F) is an equalizer.

(P2)
Implicit in this statement is that the arrows above can be canonically
defined: this follows from the fact that equivariant line bundles on X (up
to isomorphism) are in bijection with equivariant Cartier divisors, which
form a partially ordered set.

The property (P1) is too restrictive to turn the poset of moment poly-
topes into a Grothendieck topology. Instead what we do is weaken the
condition (P1) and consider all equivariant line bundles on X. In this cat-
egory diagrams of the form (P2) have a natural generalization, and this
turns out to be a bona fide Grothendieck topology. For our purposes, it is
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convenient to extend the poset of equivariant Cartier divisors to a larger
poset, where we allow some components of multiplicity of +∞ (but not
−∞). We denote these (Cartier) “quasidivisors,” QDiv. Such “divisors”
are still associated with line-bundle-like sheaves (though now possibly qua-
sicoherent rather than coherent), and when the resulting sheaf is ample
its moment polytope is a convex unbounded polytope in Rn (thought of
as having some faces at ∞). We write the resulting Grothendieck topol-
ogy (QDiv, Θ) or Θ for short. A very useful property of the topology Θ
is “existence of (enough) points”, which says that this category possesses
a collection of stalk functors which are conservative (i.e. which distin-
guish isomorphisms of modules). The “mirror” to the stalk functors are
functors from the category QcohT (X) to Vect, which turn out to be func-
tors of (graded) sections on standard affine subsets. This means that the
“stalkwise local” point of view on sheaves on Θ corresponds under our
equivalence of Abelian categories to the “affine local” point of view on
Qcoh(X)! The interplay between these two points of view (especially af-
ter generalizing this picture to Novikov varieties) will be one of the most
important technical tools in this paper.

The Grothendieck topology (QDiv,Θ) on equivariant quasidivisors has
action by the character lattice X∗(T ) ∼= Zn, which can be thought of ei-
ther as shifts by equivariant characters or equivalently as shifts by homo-
geneous principal divisors. We can “quotient out” (in a category-theoretic
sense) by this equivariance to get a new Grothendieck topology (QDiv,Θ).
In the same way that objects of QDiv behave as a generalization of poly-
topes in Rn, objects of QDiv behave as the same polytopes, but now
mapping as étale opens to the quotient Rn/Zn = S. Using the duality
result in section 2 (together with some formal nonsense from Appendix
[topoi and equivariance]) we deduce that sheaves on the Grothendieck
topology (QDiv,Θ) are equivalent as an Abelian category with the cate-
gory of non-equivariant sheaves, Qcoh(X).

Note (in the equivariant case) that if it were the case that all objects
of QDiv correspond to convex polyhedra in a functorial way compatible
with open covers, then we would have a map of Grothendieck topologies
B : Opens(Rn) → Θ with the “pullback” of a divisor being the interior
associated polytope (an object of the category underlying the topology,
Open(Rn)). In fact, this is true if and only if X is an affine toric variety,
in which case the derived functors of the pullback and pushforward with
respect to B coincide with the [?] ccc functor B∗ = ccc : Db QcohT (X)→
Db Constr(Rn) and its adjoint. When X is not affine, it is no longer true
that all line bundles are ample, and so the convex polytope ∆L cannot be
defined in general. Instead, what becomes associated to a general divisor is
a certain derived sheaf of sets. In the language of∞-categories these give a
(finite) derived correspondence Bder : Opens(Rn)→ Θ. It is still possible
to define pullback and pushforward along this correspondence, so long
as one is dealing with derived categories. The pullback and pushforward
functors (Bder)

∗, (Bder)∗ with respect to this correspondence will then be
dg functors, which provide us with the ccc functor and its adjoint in the
general case. In cases where there is no ambiguity, we still write B∗, B∗
for the derived functors (Bder)

∗, (Bder)∗.
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1.4 Novikov toric varieties and almost local sheaves
Recall that a toric variety is a compactification of the torus T := Spec k(Zn).
A Novikov toric variety is a compactification (in a non-Noetherian sense)
of the Novikov torus, TNov := Spec k(Rn). Here k(Rn) is the group al-
gebra. We denote elements p ∈ k(Rn) “Novikov polynomials” and write
p =

∑
λ∈Rn pλt

λ with almost all pλ = 0. The notation is in analogy with
“Novikov series”, which are certain infinite sums

∑
prt

r over r ∈ R, which
appear on the Fukaya side of most mirror symmetry statements in a re-
lated, but not entirely analogous, context.

Given a full-dimensional cone Λ ⊂ Rn (closed, convex with nonempty
interior, and invariant with respect to multiplication by R+,) we define
k(Λ) to be the (unital, commutative) semigroup algebra of Λ. We observe
that in this case the ring of functions k(Rn) on the Novikov torus is a
localization of k(Λ): indeed, in order to get k(Rn) from k(Λ) it is sufficient
to invert any tλ for λ in the interior of Λ. If Σ ⊂ Rn is a polyhedral fan
then the k[σ∨] are all partial completions of TNov which glue to form
a variety, XNov

Σ . If Σ is a rational polyhedral fan with (ordinary) toric
variety X associated to Σ then we write XNov = XNov

Σ the “Novikov
variety associated to X”. A general Novikov fan will not be rational and
in particular will not be associated to an ordinary toric variety.

Now the short exact sequence of groups Zn → Rn → Rn/Zn gives a
short exact sequence of group schemes Spec k(Rn/Zn) → Spec k(Rn) →
Spec k(Zn). We introduce the notation Spec k(Rn/Zn) =: S∼. Now TNov
acts on XNov

Σ for any fan Σ in a similar way to how T acts on a toric
variety. This means that (Sn)∼ ⊂ TNov also acts on XNov

Σ . For Σ a
rational fan with associated toric variety X, the quotient XNov/S∼ is a
stack which compactifies (in a suitable sense) TNov/S∼ ∼= T . In fact, this
stack should be thought of as having underlying variety X and stabilizer
isomorphic to Spec k(Rk/Zk) on each n − k-dimensional open orbit in
X. Thus one possible point of view on toric varieties (and the point of
view we essentially take here) is that in fact the variety XNov is a “more
fundamental” object than X and X is simply the space

“XNov//S
∼”

underlying the stack XNov/S∼.
We will be interested not in the entire category Qcoh(XNov) but rather

a slightly smaller subcategory, Qcoha(XNov) of “almost local modules”.
The qualifier “almost” comes from Faltings’s theory of almost geometry
(see [?]) transposed to a global context. In the terminology of [?], if R
is a valuation ring with non-discrete valuation group, with residue field k
and fraction field K, we say that a module V over R is almost local if the
restriction map V (= Hom(R, V ))→ Hom(a, V ) is an isomorphism. When
the valuation is not discrete, this property is strictly weaker than being
a module over K: for example, the maximal ideal a is itself almost local,
but never a module over K. In fact, in the non-discretely valued case, the
category Moda(R) of almost local modules is much closer to the category
of R-modules than to K-modules, as there is a Serre exact sequence of
categories Mod(k) → Mod(R) → Moda(R) (whereas in the discretely
valued case, the Serre kernel of the functor Mod(R)→ Mod(K) would be
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the much larger category of all modules with support some thickening of
the special fiber). In this paper, a coherent sheaf over a Novikov variety
will be called almost local if its restriction (as well as the derived functors
of the restriction) to any proper closed equivariant Novikov subvariety
is trivial. Define the ring of Novikov taylor series to be the completion
R̂ := k̂(R≥0) of the semigroup ring R := k(R≥0). One can then show
that almost locality of a sheaf F is equivalent to almost locality in the
sense of [?] of certain completions of F over the non-discretely valued
ring R̂. Similarly to the case of perfectoids, we have a Serre sequence of
categories Qcoh(∂XNov) → Qcoh(X) → Qcoha(X), where Qcoh(∂XNov)
is the category of sheaves over the (closed) boundary X \ TNov. Despite
the fact that in the definition of almost locality we “puncture” the closed
fiber of the complement XNov

Σ \TNov, the category of almost local sheaves
on XNov

Σ depends in a nontrivial way on the fan Σ and is in general quite
far from the category of sheaves on TNov. When Σ is a regular rational fan
with toric variety X = XΣ the (usual) category of quasicoherent sheaves
on X will be naturally a full subcategory of Qcoha(XNov

Σ ).
We work with three equivariant flavors of Qcoha(XNov

Σ ) : other than
Qcoha(XNov

Σ ) itself, we also consider equivariance under the Novikov torus
Qcoha(XNov

Σ )TNov and under the subgroup S∼ (= Spec k(Rn/Zn)) ⊂
TNov. With these three equivariant flavors, we prove the following results.
Let Σ be a fan in Rn and let Λ := ∪σ∈Σσ ⊂ Rn be its support. View
T ∗(Rn) as Rn × Rn with the second coordinate the normal coordinate,
and similarly view T ∗S ∼= S × Rn, where S := Rn

Zn . Then the manifold
Rn × Λ ⊂ T ∗Rn gives a valid singular support condition for sheaves on
Rn, and similarly S × Λ ⊂ T ∗S is a valid singular support condition for
S. (Here we should think of the coordinate of the ambient space of the
fan as being the second, “momentum” coordinate.)

Theorem 4. Then

Db Qcoha(X)TNov ∼= Db ShvRn×Λ(Rn), (3)

Db Qcoha(X)S
∼ ∼= Db ShvS×Λ(S), and (4)

Db Qcoha(X) ∼= Db ShvRn×Λ(Rn)R
n

. (5)

The notation Shv here means sheaves in the topological sense (which
might not be constructible with respect to any stratification). The cat-
egory ShvRn×Λ(Rn)R

n

is the category of Rn-equivariant sheaves on Rn,
which includes much more than just constant sheaves: for example, the
direct sum of skyscraper sheaves at all points of Rn is naturally Rn-
equivariant. Lines (4) and (5) above follow via some formal nonsense
(see section 2) from (3), which can be considered the main result of this
paper.

1.5 Statement of main results
Here we collect all of our results together. Let Σ be a toric fan (with cones
that are polyhedral but are allowed to not be rational) in the space NR
with dual space MR, with “support” Λσ := ∪σσ ⊂ NR. Let A ⊂ NR (for
most of the paper, we will work with A = NR) be a dense subgroup which
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contains M ⊂MR and such that each cone σ ∈ Σ is spanned by its inter-
section with A. The group scheme TNov−A is defined to be the affine group
scheme with ring of functions k[A]. Write SA = A/M (when A = MR this
is the mirror torus); it is a group, and (ignoring any topology on S), we
define S∼A to be the affine group scheme Spec(k[SA]).We have an inclusion
S∼A ⊂ TNov−A (with quotient T = Spec(k[M ]), as shown in Lemma 12).
Associated to the fan Σ we define a TNov-equivariant scheme XNov−A

Σ

which compactifies TNov. The scheme XNov−A
Σ supports a quasicoherent

category Qcoh(XNov
Σ ) and inside an Abelian subcategory Qcoha(XNov

Σ )
of “almost local” quasicoherent sheaves, which is equivalent to the almost
category (in the sense of [Faltings]) associated to the idempotent sheaf
of defining ideals for the boundary ∂ ⊂ Xσ. There is a sense in which
an additive category over k can be equivariant with respect to a group
scheme G, and the category Qcoha(XNov

Σ ) is equivariant with respect to
TNov−A, and hence also with respect to S∼A ⊂ TNov−A. In particular, we
can define categories of equivariant objects Qcoha(XNov−A

Σ )TNov−A and
Qcoha(XNov−A

Σ )S
∼
A with respect to these actions. On the other hand, let

Shv(MR) be the category of all topological sheaves on MR. This category
has equivariance with respect to A ⊂MR (viewed as a discrete group and
acting by transations) and also with respect to M ⊂ A. We can also
define categories of equivariant objects with respect to these actions, and
observe that since the action ofM onMR is discrete and free, the category
of equivariant objects Shv(MR)M ∼= Shv(S) for S := MR/M .

With this set-up we prove the following mirror symmetry results. (An
analogue for the dense subgroup A of theorem 4):

Theorem 5. Suppose the fan Σ is compete, i.e. ΛΣ = NR. Then we have
the following three equivalences of derived categories.

Db Qcoha(XNov−A
Σ )TNov−A ∼= Db Shv(MR). (6)

Db Qcoha(XNov−A
Σ )S

∼
A ∼= Db Shv(MR)M

( ∼= Db Shv(S)
)
. (7)

Db Qcoha(XNov−A
Σ ) ∼= Db Shv(MR)A (8)

It is from part (7) above, applied to the dense subgroup A = Q⊗M ⊂
M , that we deduce the log-perfectoid mirror symmetry interpretation
(Theorem 3).

For a fan Σ which is not complete (and has support ΛΣ), we deduce
an analogous triad of results with equivariant versions of Shv(MR) on
the right replaced by the category ShvΛ(MR) of “topological sheaves with
singular support MR × Λ ⊂ T ∗MR” (which we define).

2 Equivariant Categories and Spectral Pon-
trjagin Duality
Recall that if G is a topological commutative group, its Pontrjaging dual
is G∨ := Hom(G,U(1)). This is equivalent to the unitary spectrum of G,
with product structure corresponding to tensor product of unitary repre-
sentations. A closely related concept in algebraic geometry: if G is a finite
group scheme over a field k, then the group of its characters Hom(G,Gm)
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is also a finite affine commutative group scheme, called the “Cartier dual”
G∨ to G. If G = SpecH for H a finite dimensional commutative, co-
commutative Hopf algebra then G∨ ∼= Spec(H∗). In this section, we will
study categorical actions associated with an intermediate kind of duality
we call spectral Pontrjagin duality, which is between a discrete commuta-
tive group G and a dual group scheme G∼ over k.

Definition 1. If G is a discrete commutative group, write G∼ := Spec k(G)
for the affine group scheme with function ring the group algebra of G,
viewed as a Hopf algebra.

Remark 1. When G is a finite group, the duality G → G∼ is a special
case of Cartier duality. Indeed, the discrete group scheme G × ptk and
Spec k(G) are Cartier dual finite group schemes. However, when G is an
infinite group, the dual Hopf algebra k(G)∗ is too large an algebra, and
Spec(k(G)∗) does not behave, e.g. from the point of view of representation
theory, in the same way as G. It might be possible to express the duality
G� G∼ as a special case of a generalization of Cartier duality if we pass
to a larger category than affine group schemes: e.g., by thinking of G×ptk
as a group object in Ind-schemes. However, in order to avoid introducing
unnecessary formalism in this section we will restrict ourselves to studying
the representation theoretic behavior of the duality functor G 7→ G∼ from
discrete groups to affine groups schemes.

2.1 Categorical equivariance
Definition 2. Suppose C is a category and G is a group. A (strict) G-
equivariant structure on C is a strict representation of G on endofunctors
of C. I.e., it is a collection of functors X 7→ gX (g ∈ G) with isomor-
phisms h(gX) ∼= (hg)X and a cocycle condition that says that the two
different natural isomorphisms i(h(gX)) ∼=(ihg) X coincide.

Definition 3. Suppose C is a k-linear category and G is an affine group
scheme over k. Suppose further that C is Abelian and has all colimits
(this is not strictly necessary, but simplifies exposition). Write CG for
the category of objects of C fibered over the scheme G, i.e. with O(G)
action. A G-action on C is then an Abelian functor A : C → CG together
with an isomorphism A ◦ A ∼= µ∗A of functors C → CG×G. Here µ∗ :
CG → CG×G is the pullback functor along the multiplication map of schemes
µ : G×G→ G. It is well defined because pullback is a colimit (actually, a
tensor product) and C has all colimits.

Writing µ3 : G×G×G→ G for the (associative) multiplication map,
we have two natural isomorphisms A ◦ A ◦ AX ∼= µ∗3AX for X ∈ C an
object. We require these to be equal.

A consequence of these axioms is that the composition C A- CG
fib- C

is the identity, where CG
fib- C is the fiber at 1 ∈ G functor (well-defined

because of the existence of colimits).

Definition 4. For G a discrete group, let EG be the category with objects
Xg | g ∈ G and a unique invertible map Xg → Xh for any g, h. This
category has an obvious (and unique) G-equivariant structure with hXg =
hgX. If C is an arbitrary G-equivariant category, define the category CG
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of G-equivariant objects in C to be the category FunG(EG, C) of functors
strictly compatible with G-equivariance. More concretely, an object of CG
is an object X ∈ C with isomorphisms ρg : X ∼= gX satisfying ρ1 = 1 and
such that the diagram

X
ρg

∼
- gX

ghX

ρgh ∼

?
∼- g(hX)

gρh ∼

?

(9)

commutes. Here gρh is obtained by applying the g-action functor to the
arrow X

∼
ρh

- hX.

Now we make a similar definition for a group scheme G.
Definition 5. Suppose G is a group scheme and C is an Abelian G-
equivariant category with all colimits. We say that a G-equivariant object
of C is an object X of C together with a functorial isomorphism of G-
fibered objects (objects in CG): A(X) ∼= XG. Here XG is the pullback of X
along the map G→ ptk .

The isomorphism is required to satisfy an analogue of the commuta-
tivity restriction of the diagram (9) written in a fibered way: namely, the
diagram

X
ρ - XG

XG

ρ

?
∆- XG×G

A(ρ)

?

(10)

must be commutative.

It is easy to check that these definitions of G-invariants as well as
G-invariants are functorial. Further, the following lemma is standard:

Lemma 6. If C, C′ are G-equivariant categories as above and C → C′ is
a G-equivariant functor which is an equivalence of categories, then the
functor CG → (C′)G is an equivalence of categories. Similarly, if C, C′
are G-equivariant categories and C → C′ is a G-equivariant functor which
is nonequivariantly an equivalence, then CG → (C′)G is an equivalence of
categories.

We will extensively use the following lemma, which essentially says
that if we consider a category C with trivial G∼-action then equivariant
objects are the same as G-graded objects.

Definition 6. 1. Given a category C, write Cgr G for the category of
G-graded objects of C (i.e. collections of G-tuples objects of C with
Hom({Xg}, {Yg}) :=

∏
g∈G Hom(Xg, Yg).)
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2. If C has symmetric monoidal structure and all colimits, the category
Cgr G has graded (unsigned) symmetric monoidal structure, with

({Xg} ⊗ {Yg})h := ⊕g1+g2=hXg1 ⊗ Yg2 .

3. Similarly, if C is a module category over the symmetric monoidal
category a then agr G acts on Cgr G in a similar way.

Definition 7. 1. Write CG for the category of “sheaves of C-objects
over the scheme G”, i.e. objects of C with OG-action.

2. If C is symmetric monoidal with colimits, define symmetric monoidal
structure on CG by F⊗G := µ∗(F�G). Here if F ,G are objects with
OG action then F � G is F ⊗ G viewed as an object with OG ⊗OG-
action and the functor µ∗ pulls back the OG⊗OG action to OG action
via the comultiplication map µ∗ : OG → OG ×OG.

3. Simiarly, if C is a module category over the symmetric monoidal
category a then aG acts on CG in a similar way.

Lemma 7. Suppose G is a commutative discrete group scheme. Write

G := G∼.

Suppose that C is an Abelian category with all colimits and further, suppose
every object of C can be filtered by compact subobjects. We view C as both
a G-equivariant and a G-equivariant category with trivial action.

1. We have an equivalence of categories CG ∼= CG. This equivalence
of categories is compatible with monoidal structure if C is monoidal
and with module category structure if C is a module category over
the monoidal category a.

2. We have an equivalence of categories CG ∼= Ggr G. This equivalence
of categories is compatible with monoidal structure if C is monoidal
and with module category structure if C is a module category over
the monoidal category a.

Proof. Part (1) follows from the definition. Part (2) can be rephrased as
the following proposition:

Proposition 8. Every representation of G is diagonalizable.

To prove this, filterG by finitely-generated Abelian subgroupsGi (with
i an index in some totally ordered set). Write Gi := G∼i , a projective
system converging to G. Suppose that V is a representation of G, and let
Vi ⊂ V be the maximal subrepresentation on which the G action factors
through Gi. Now we know from standard algebraic geometry (and the
classification of finitely generated abelian groups) that representations of
Gi are diagonalizable. It suffices to show that the Vi filter V , equivalently
that any compact U ⊂ V is stabilized by the kernel of some map G→ Gi.
Indeed, recall that the structure of a G-representation is defined by a
map V → VG = V ⊗ k(G). By compactness, the image of U ⊂ V will
land in some finite sum ⊕Ni=1t

gi , which lies inside some finitely generated
piece V (Gi). This proves the proposition, and hence the lemma. The
compatibility with tensor product is clear.
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Corollary 9. An algebra in the category of G-representations is equivalent
to a G-graded algebra and an algebra in the category of G-representations
is equivalent to a G-graded algebra (in the obvious sense: i.e. a sheaf a over
G with algebra structure A� A→ A lying over the map µ : G×G→ G).

It follows from this result that the category VectG is symmetric monoidally
equivalent to the category of G-graded modules.

Definition 8. In particualr, we have a special class of objects χg ∈ VectG

for g ∈ G corresponding to one-dimensional vector spaces in degree g ∈ G.
Definition 9. Similarly, the category VectG is equivalent to the category
of sheaves over G, and in particular we have a special sheaf χG which we
view as a family of one-dimensional representations fibered over G.

Note that the category Vect acts by tensor product on any abelian
category over k with all colimits. It follows that VectG acts on the G-
invariants CG and, respectively, VectG acts on the G-invariants CG for C
a G-equivariant, respectively, a G-equivariant Abelian category with all
colimits.

Lemma 10. If C is a G-equivariant category with all colimits then the
category CG has G-action via the functors αg : X 7→ X ⊗ χg for g ∈ G.
Simiarly, if C is a G-equivariant category with all colimits then the category
CG has G-action via the functor AG : C → CG given by X 7→ X ⊗ χG.

Proof. Simple verification.

Now we are ready to prove the main theorem of this section.

Theorem 11 (Categorical Pontrjagin Duality). 1. Suppose C is a com-
pactly generated G-equivariant category with all colimits. Then we
have an equivalence of categories (CG)G ∼= C

2. Suppose C is a compactly generated G-equivariant category with all
colimits. Then we have an equivalence of categories (CG)G ∼= C.

Proof. Suppose we are in case (1). Let O := k[G] be object of (VectG)G

with G-action by multiplication and evident G-equivariance. The functor
X 7→ X⊗O gives us a functor C → (CG)G. In the other direction, note that
given an object E of (CG)G and forgetting the G action, we get an object
forgG(E) of CG with trivial action (as the action of G twists by characters
of G, which are trivial when we forget the G action). By lemma 7, this
gives the object of C underlying E a G-grading. It is a simple check that
the functor E 7→ forgG(E)〈0〉 sending E to one of its graded components
is an inverse functor to X 7→ X ⊗O.

Now suppose we are in case (2). Then (abusing notation) we can view
the vector space O := k[G] as an object of (VectG)G in an evident way,
giving a functor C → (CG)G with X 7→ X ⊗ O. In the other direction,
observe once again that we have a forgetful functor forgG : (CG)G 7→ CG
where the G-action is trivial. We have a fiber functor fib : CG → C given
by taking the fiber at the point 0 ∈ G of C viewed as an object of CG. It is
another simple verification that fib◦forgG is an inverse to X 7→ X⊗O.
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2.2 Short exact sequences
We prove a couple more technical results about the behavior of categorical
equivariance with respect to short exact sequences of groups. Suppose
0→ G′′ → G→ G′ → 0 is a short exact sequence of commutative groups.

Proposition 12. The sequence (G′)∼ → G∼ → (G′′)∼ is an exact se-
quence of affine commutative group schemes.

Proof. Recall that a sequence G′ → G→ G′′ of affine commutative group
schemes is a short exact sequence if and only if the map G π- G′′ is
flat and the map i : G′ → G maps G′ isomorphically to the fiber π−1(0).

Now writeG := G∼,G′ := (G′)∼,G′′ := (G′′)∼, with mapsG′ i- G π- G′′
dual to the corresponding maps of groups. The map π∗ on functions is
the embedding k[G′′] → k[G] which evidently flat (in fact, free). The
fiber π−1(0) is Spec(k[G] ⊗k[G′′] k) where the map of rings k[G′′] → k is
the augmentation map. Evidently, k[G]⊗k[G′′] k ∼= k[G′], completing the
proof.

Write G′ → G→ G′′ for the sequence of dual groups.

Lemma 13. 1. Suppose C is a small G-equivariant category. Then
CG
′′
is naturally equivalent to a G′-equivariant category and using

this model we have an equivalence of categories (CG
′′

)G
′ ∼= CG.

2. Suppose C is a small G-equivariant category. Then CG
′
is naturally

equivalent to a G′-equivariant category and using this model we have
an equivalence of categories (CG

′
)G
′′ ∼= CG.

Proof. The statement is of model theoretic nature, and is proven most
naturally by introducing a model category structure on G-equivariant
(resp., G-equivariant) categories with weak equivalences given by equiv-
ariant maps which are equivalences of categories. We will give a proof
without explicitly introducing this formalism.

Suppose we are in the case (1). Then recall that CG
′′
is defined as the

category of G′′-equivariant functors E → G′′, equivalently the category
of strict G′′-fixed objects in the category Fun(EG′′ , C). Write C̃ for the
category Fun(EG, C) viewed combinatorially (a set of objects and mor-
phisms), as a G-equivariant category. We can choose a G′′-equivariant
retract of the functor EG′′ → EG, giving a pair of inverse G′′-equivariant
equivalences EG′′ ∼= EG. This pair of functors gives us an equivalence of
categories between CG

′′
and C̃strict G

′′
, where the notation strict in the

superscript means we are taking invariants in a combinatorial sense (in
terms of invariant objects and morphisms). Using this model, the (com-
binatorial) G-equivariant structure on C̃ restricts to an equivariant struc-
ture on C̃strict G

′′
which factors through to a G′-equivariance. We have

an equality of combinatorial objects
(
C̃strict G

′′
)strict G′

= C̃strict G, and

a natural functor C̃strict G → C̃G (pre-composing with the G-equivariant
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functor EG → pt). Now we have(
C̃strict G

′′)G′ ∼= Fun
(
EG′ ,Fun (EG, C)strict G

′′)strict G′
(11)

∼= Fun(EG×G′ , C)strict G, (12)

where G acts on EG×G′ diagonally and the isomorphism in the second
row is a categorical adjunction result. Now EG×G′ is has a G-equivariant,
equivariantly invertible category equivalence with EG, so the last term is
isomorphic to EG.

Now we could prove part (2) of the lemma by reconstructing the argu-
ment above in an algebro-geometric context. (Note that in fact, the result
holds for any short exact sequence of affine group schemes G′ → G→ G′′.)
However, for simplicity we instead use an extension of Theorem 11 to
prove it only for algebraic groups of the form G∼. Namely, we prove the
following proposition.

Proposition 14. We have an equivalence of categories CG
′ ∼= (CG)G

′′
.

Here recall that G acts on CG by character twists, and G′′ acts via the
embedding G′′ ⊂ G.

Proof. Suppose X is an object of (CG)G
′′
. As seen in the proof of the-

orem 11, there is a G′′, i.e. a OG′′ , action on the nonequivariant object
forgG(X) ∈ C. Write fibforgG(X) for the fiber of forgG(X) over 0 ∈ G′′.
Observe that this functor has G′ action. This induces a pair of functors
CG
′
� (CG)G

′′
, which are inverse by an argument similar to our proof of

Theorem 11.

3 Algebra of Cones
Define MR := Rn. If Λ ⊂ MR is a subset of MR closed under addition
(but not subtraction), the space k(Λ) with basis Λ has the structure of
an algebra, and k(∆) has the structure of a k(Λ)-module if ∆ ⊂ MR is
a subset closed with respect to addition of elements of Λ. Furthermore,
viewing MR as a discrete group, we have M∼R an algebraic group scheme
with category of representations equivalent (in a monoidal way) to the cat-
egory of MR-graded vector spaces. In particular, both k(Λ) and k(∆) for
Λ ⊂MR,∆ ⊂MR as above are MR-graded, equivalently M∼R -equivariant.

We will be interested in this section in two cases: either when Λ is a
(dual) polyhedral cone in MR or when it is the intersection of a (dual)
polyhedral cone with a lattice M ⊂MR.

3.1 Direct limits
Recall from basic category theory that the functor Free : Sets→ Vect with
X 7→ k(X) commutes with direct limits. It follows easily that its graded
analogue Freegr MR : SetsMR → VectMR commutes with direct limits as
well. We deduce the following two results.
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Proposition 15. 1. Suppose that U1 ⊂ · · · ⊂ Ui ⊂ . . . is a collection
of open sets indexed by a totally ordered index set i ∈ I. Write
U := ∪iUi. Then colim k(Ui) ∼= k(U).

2. Suppose that {Ui} is a collection of (arbitrary) subsets Ui ⊂ MR
indexed by an arbitrary set i ∈ I. For i, j ∈ I write Uij := Ui ∩ Uj .
Then the diagram

⊕
i,j k(Uij) ⇒

⊕
i k(Ui) → k(U) is a coequalizer

diagram.

From part (1) of the above, we deduce the following result.

Proposition 16. Suppose that Λ ⊂ MR is a sub-semigroup of MR and
∆ is a Λ-equivariant subset. Let λ ∈ Λ be a point. Write tλ for the
generator corresponding to the point λ ∈ MR. Then we have localizations
k(Λ)[(tλ)−1] ∼= k(Λ−Nλ) and k(∆)[(tλ)−1] ∼= k(∆−Nλ). Here Nλ is the
set 0, λ, 2λ, . . . .

Inspired by this fact, we make the following definition. Suppose λ ∈
MR is a vector and ∆ ∈ MR is a subset with ∆ + λ ⊂ ∆. Then we define
the localization ∆λ of ∆ by λ to be

∆λ := ∆− Nλ.

3.2 Polyhedral cones
Write NR := M∨R .

Definition 10. A subset Λ ⊂ NR is called a cone if Λ is closed, 0 ∈ Λ it
is invariant with respect to positive dilations R+ ·Λ ⊂ Λ and Λ is convex.
(Note that some authors use “cone” for something which is not necessarily
closed and convex: a more consistent terminology might be “closed, convex
cone”.)

Convexity implies that for any x, y ∈ Λ, the midpoint x+y
2

is also in
Λ. Dilation-invariance implies that x+y ∈ Λ as well, so that Λ is a unital
semigroup.

We write down some standard definitions for cones.

Definition 11. 1. 〈Λ〉 is the vector space spanned by Λ, equivalently
(by the semigroup property and dilation invariance,) Λ + (−Λ).

2. Λ± is the maximal vector space contained in Λ, equivalently Λ∩−Λ.

3. The “dual cone” to Λ ⊂ MR is the cone in the dual vector space NR
of vectors that pair nonnegatively with Λ, i.e.

Λ∨ := {y ∈MR | 〈λ, y〉 ≥ 0∀λ ∈ Λ} ⊂MR.

4. The “orthogonal vector space” to a cone Λ is the orthogonal space to
its span, Λ⊥ := 〈Λ〉⊥.

5. We say that Λ is sharp (also called “salient”) if Λ± = {0}.
6. We say that Λ is full if it contains a non-empty open, equivalently if
〈Λ〉 = MR.

Note that we allow cones which are not full, i.e. which are contained in
a proper sub-vector space. For such cones we will slightly abuse notation
as follows.
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Definition 12. Given a cone Λ ⊂ MR, write Λ̊, the “interior of Λ” for
the maximal open set of 〈Λ〉 contained in Λ.

We collect here some simple combinatorial results about cones.
Lemma 17. 1. The duality functor is contravariant with respect to in-

clusion.
2. For any cone Λ, the double dual (Λ∨)∨ = Λ.

3. λ⊥ = 〈Λ〉⊥ = (Λ∨)±

4. Λ is full if and only if Λ∨ is sharp.
5. Λ = MR if and only if it contains an open neighborhood of 0.

Definition 13. We say that a cone Λ is polyhedral if it is the set of so-
lutions to a finite set of inequalities, equivalently an intersection of closed
half-spaces.
Definition 14. Given a lattice M ⊂ MR, we say that a polyhedral cone
Λ is rational if it is the set of solutions to a finite set of inequalities with
rational coefficients relative to a basis of M .
Definition 15. We say that a polyhedral cone is regular if it is the positive
quadrant

∑
mi∈Z+ mixi for xi ∈ M ′ ⊂ M is the basis of some (possibly

lower-dimensional) sublattice M ′ = M ∩M ′R.
Given a polyhedral cone Λ and a vector λ ∈ Λ, we can consider the

localization (defined above) Λλ := Λ− Nλ.
Proposition 18. 1. Λλ = Λ + Rλ, and in particular is also a cone.

2. The dual cone Λ∨λ is the closed sub-cone

Λ∨ ∩ (R · λ)⊥.

Proof. The first part is obvious. For the second, note that since Λ∪±λ ∈
Λλ, contravariance implies that Λ∨λ ⊂ Λ∨∩(R ·λ)∨. In the other direction,
if we have some x ∈ Λ∨∩(R·λ)⊥ then 〈x, y〉 ≥ 0 for y ∈ Λ and 〈x,−λ〉 = 0
so 〈x, y − rλ ≥ 0 for any r ∈ R.

If Λ is a cone, we say that Λ′ ⊂ Λ is a face of Λ either if Λ′ = Λ or if
Λ′ = H ∪ Λ, for H the boundary of a half-space which contains Λ. (For
us, a face is allowed to have arbitrary codimension.)
Definition 16. Write Λ′ 4 Λ if Λ′ is a face of Λ.

From the above proposition, we get the following useful result.
Lemma 19. Λ′ is a face of Λ if and only if (Λ′)∨ is a localization of
Λ∨. Further, if Λ is a rational polyhedral cone with respect to some lattice
M ⊂Mλ then λ can be taken to be an integral vector λ ∈M ∩ Λ.

Proof. Suppose 0 6= λ ∈ Λ. Consider the hyperplane (R+λ)∨. Then on
the one hand, Λ ⊂ (R+λ)∨, on the other hand, by Proposition 18, we see
that the dual to the localization Λ∨λ = Λ∨ ∩ (Rλ)⊥ is the intersection of
the localization with the boundary of (R+λ)∨. Thus the intersection will
be a face of Λ∨. In the other direction, by convexity, for any face σ ⊂ Λ∨

there is a nonnegative linear function on Λ∨ which is equal to zero exactly
on σ. Writing λ ∈ N∨R for a linear extension of this function to all of NR,
we have λ ∈ Λ by nonnegativity of λ | Λ∨ and Λλ = σ∨. Obviously, if Λ
is rational (with respect to a lattice), λ can be taken to be rational.
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Corollary 20. Suppose that Λ is a cone, and λ1, λ2 ∈ Λ are vectors. Let
Λi := Λλi . Then (Λλ1+λ2)∨ = Λ∨1 ∩ Λ∨2

Since the {Λ′ | Λ′ 4 Λ} give a full set of faces of the polytope Λ in a
combinatorial sense, we have the following result:

Proposition 21. For any polyhedral cone Λ, we have

Λ =
⊔

Λ′4Λ

Λ̊′.

Now we can define a fan.

Definition 17. A fan Σ in NR is a finite nonempty set σ ∈ Σ of sharp
cones in NR such that

1.
⊔
σ∈Σ σ̊ ⊂ NR (i.e., the cones are disjoint) and

2. if σ ∈ Σ and σ′ 4 σ is a face then σ′ ∈ Σ.

Any fan Σ comes naturally with the structure of a partially ordered
set by boundary containment, with σ 4 σ′ if σ ⊂ σ′. Note since our cones
are sharp and Σ is nonempty, the zero cone {0} ⊂ NR will be the initial
element of Σ. Given a pair σ, σ′ of cones in Σ, their intersection σ ∩ σ′
is also in Σ. Thus, Σ is a finite poset with arbitrary intersections (i.e.,
a meet-semilattice). We will use the notation Σk ⊂ Σ for the subset of
k-dimensional cones in Σ.

Most fans do not have a terminal element (when viewed as posets).
Those that do are called affine. For any sharp cone σ, there is a unique
fan with terminal element σ. Namely, it follows from Proposition 21 that
the set defined in the following definition is a fan:

Definition 18. Given a sharp polyhedral cone σ ⊂ NR, write Σσ, the
“affine fan associated to Σ”, for the set of all faces σ′ 4 σ.

Definition 19. We say that a fan Σ is complete if
⋂
σ∈Σ σ̊ = MR.

Definition 20. We say that a fan is rational, resp., regular, if all its
cones are rational, resp., regular.

A one-dimensional cone is called a ray. If ρ ⊂MR is a ray andM ⊂MR
is a designated lattice ρ is rational with respect to M if and only if it
contains a nonzero integral point of M . In this case, the intersection
ρ ∩M will be a semigroup isomorphic to N.
Definition 21. For rational rays ρ, we use the notation gρ for the (unique)
generator of ρ ∩M .

4 Toric Novikov Varieties and Almost Lo-
cal Sheaves
Suppose that Σ is a fan. For σ ∈ Σ write

ONovσ := k(σ∨).

If σ is rational with respect to a lattice N ⊂ NR, we also define

Oσ := k(σ∨ ∩M),

22



with M := N∨ the dual lattice. If σ 4 σ′ we have a containment of rings
ONovσ′ ⊂ ONovσ and Oσ′ ⊂ Oσ of both of these are defined.

Lemma 22. 1. The ONovσ , as well as (when defined) the Oσ, together
with the maps above give a representation of the poset Σop4 in rings.

2. For each pair τ 4 σ, the map of rings ONovσ → ONovτ , as well as
(when defined) the map Oσ → Oτ , are localization maps.

3. If we have a quadruple of cones

σ

  
τ

>>

  

κ

σ′

>>

such that τ = σ ∩ σ′ then ONovσ ⊗ONovκ
ONovσ′

∼= ONovτ , i.e. on the
level of open subsets in SpecONovκ , we have

SpecONovσ ∩ SpecONovσ′ = SpecONovτ .

If the fan Σ is rational, we have an analogous result with ONov∗ re-
placed by O∗.

The lemma above is precisely what is needed to show that the SpecONovσ ,
respectively, when defined, the SpecOσ, glue together to produce a vari-
ety, which we call XNov

Σ (resp., for rational Σ, the variety XΣ). In the
special case where the fan is affine, Σ = Σσ, the glueing diagram has a
terminal element, σ, and so the variety is simply the corresponding affine
SpecOσ or SpecONovσ . We introduce notation:

Definition 22.
Xσ := SpecOσ,

XNov
σ := SpecONovσ .

Since all our rings as well as the maps between them, are MR graded
(resp., in the rational case, M -graded), we get a TNov (respectively, in
the rational case, a T )-graded structure on XNov

Σ (resp., in the rational
case, XΣ). The variety XΣ is the standard toric variety associated to
the rational fan Σ, with standard T action. We call the TNov-equivariant
variety XNov

Σ the (toric) Novikov variety associated to the fan Σ.
With the glueing data above in hand, the following definition is stan-

dard:

Definition 23. A coherent sheaf F on XNov
Σ is uniquely determined by

a collection of modules Fσ over ONovσ with coherent maps resστFσ → Fτ
for σ ⊂ τ indexed by the poset Σop4 , such that the adjoint map

Fσ ⊗ONovσ
ONovτ → Fτ

is an isomorphism. Similarly, for rational Σ, a coherent sheaf on XNov
is determined by a diagram Fσ of modules over Oσ indexed by Σ with an
analogous localization requirement.
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Now from Corollary 20, we deduce the following result.

Lemma 23. A TNov-equivariant coherent sheaf on XNov
Σ is uniquely de-

termined by a colletion Fσ as in definition 23 together with MR-gradings
of each Fσ which are compatible with the maps resστ .

4.1 The poset Mσ

Suppose σ is a cone.

Definition 24. Let Mσ := M/σ⊥ be the dual vector space to 〈σ〉.
On Mσ the cone σ∨/σ⊥ is sharp, and thus defines a partially ordered

set structure as follows.

Definition 25. For m,m′ ∈ Mσ, we say that m 4σ m′ if m′ − m ∈
σ∨/σ⊥.

Note that if m,m′ ∈M we can also define a category structure on M
itself with a single morphism σ → σ′ if σ′−σ ∈ σ⊥. This will be a preorder
(poset with isomorphisms), and quotienting out by the isomorphisms will
give us back the poset Mσ. Sometimes we will abuse notation slightly and
use Mσ for the above preorder on M .

4.2 Almost locality
?? In the Novikov setting, we will consider a certain full subcategory
Qcoha(XNov

Σ ) ⊂ Qcoh(XNov
Σ ) of “almost local” objects. We begin by

defining this category for the affine case, XNov
σ = SpecOσ for a cone σ.

Write aσ ⊂ Oσ for the homogeneous ideal

aσ := k(̊σ∨) ⊂ k(σ).

The ideal aσ has the wonderful property

a2
σ = aσ

(the corresponding property fails for ideals in the classical toric case), and
so we can apply a small piece of the theory of “almost Mathematics” of
[Faltings].1 First, a definition.

Definition 26. 1. Define the category of almost local representations,
Repa(Oσ) to be the full subcategory of Rep(Oσ) consisting of repre-
sentations V such that the natural map V → HomOσ (aσ, V ) is an
isomorphism.

2. Write Rep∂(Oσ) for the full subcategory of representations of V on
which aσ acts by 0.

Lemma 24. 1. The category Rep∂(ONovσ ) is a Serre subcategory. (Note
that the corresponding statement does not hold in the classical toric
case!)

1Faltings considers a slightly different context: that of non-discretely normed valuation
fields. In the case where the cone σ is a one-dimensional ray in R1, imposing the almost
locality condition on sheaves is equivalent to imposing the condition in [Faltings] on their adic
completion, the ring of Novikov series of positive valuation.
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2. The functor V 7→ Hom(aσ, V ) takes an object of RepONovσ to an
object of RepaONovσ and is right adjoint to the inclusion of categories
RepaONovσ → RepONovσ .

3. The triple of functors Rep∂(ONovσ )→ Rep(ONovσ )→ Repa(ONovσ ) is
a Serre quotient diagram.

All of these are proven in [Gabber-Ramero]. From this we deduce that
we have a short exact sequence of categories (in the sense of Serre)

Rep∂(Oσ)→ Rep(Oσ)→ Repa(Oσ).

Given a representation V ∈ Rep(Oσ), write V a := HomOσ (aσ, V ). We say
V a is the “almost local representation associated to V ”.

Now for a fan Σ which is not necessarily affine, write Qcoha(X) for
the category of sheaves of modules F such that F | Xσ is almost local.
Alternatively, define X∂ ⊂ X to be the variety glued out of SpecOσ/aσ,
a union of toric Novikov varieties of lower dimension. Define a∂ to be
the sheaf of ideals defining this variety. The condition of F being almost
local is equivalent to the condition that F → Hom(a∂ ,F) is locally an
isomorphism. Note that once again contrary to our expectations from
classical algebraic geometry, this category is different from requiring F to
be a pushforward of a sheaf on the open orbit TNov: the latter condition
can be thought of as the vanishing of F on a “large” formal neighborhood,
X∂̂ of the boundary, whereas this is vanishing on the boundary itself, with
no thickening.

If V is a representation of Oσ and τ 4 σ is a subcone, then

(V ⊗Oσ Oτ )a ∼= V a ⊗Oσ Oτ .

This means that the functor V 7→ V a, as well as the functor V 7→ V∂ glue
to functors on sheaves, F 7→ Fa and F 7→ F∂ .

4.3 Quasidivisors and R-quasidivisors
Suppose that X = XNov

σ is a toric variety.
Definition 27. We define

DivR
σ := 〈σ〉∗

and, if σ is rational, we define the lattice

DivZ
σ := (〈σ〉 ∩N)∗ ⊂ 〈σ〉∗.

We view elements of DivR
σ as linear functions on σ (which extend

uniquely to 〈σ〉). In particular, we say that a divisor (or R-divisor) α
is effective if it is nonnegative as a function on σ. Note that for a rational
fan, divisors α ∈ Divσ are in bijection with equivariant Cartier divisors
on the affine toric variety Xσ.

If Σ is a general fan, we make the following definition. Write VΣ :=⋃
σ∈Σ σ ⊂ N for the “support” of a fan. Write

Definition 28. DivR
Σ := {α : VΣ → R | α|σ ∈ DivR

σ}. Similarly, when Σ
is rational,

DivZ
Σ := {α ∈ DivR

σ | α|σ ∈ DivZ
σ}.
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We say that a (R-)divisor is effective if α is nonnegative and principal
if α = λ | Vσ for some λ ∈MR = N∗R (viewed as functions on NR).

Note that ifX = XΣ is a toric variety, elements of DivZ
X are in bijection

with T -equivariant Cartier divisors on X. Indeed, recall that every irre-
ducible equivariant variety in X is the closure of a torus orbit. In particu-
lar, irreducible codimension-one equivariant subvarieties are Yσ := Xσ \ T
classified by rays η ∈ Σ1. The divisor α ∈ DivZ

Σ in the sense above then
corresponds to the Weyl divisor

∑
α(gη)Zη, where recall that gη ∈ η is

the unique generator of the lattice subgroup. It is a standard result in
the geometry of toric varieties, which we will not use, that a Weyl divisor∑
dηZη is a Cartier divisor (and hence corresponds to an equivariant line

bundle) if and only if the dη = α(gη) for some function α ∈ DivZ
Σ . Fur-

ther, equivariant line bundles are in bijection with equivariant divisors,
and non-equivariant divisors are in bijection with the quotient DivZ

Σ
M

of
equivariant Cartier divisors by principal equivariant divisors.

Recall that to every Weyl divisor d on X we can associate a sheaf,
consisting of rational functions on X with degree of pole (or zero) along
any irreducible codimension-one subvariety Z ⊂ X bounded locally by
dη. When d is an equivariant divisor, this sheaf is naturally equivariant
and when d is a Cartier divisor, this sheaf is a line bundle. Note that if
we formally set some of the dη = +∞, there will still be a quasicoherent
(but not coherent!) sheaf associated to d, where if dη = +∞, we consider
functions with locally arbitrary poles allowed along Zη.

It will be useful for us to partially compactify the groups DivR
Σ and

DivZ
Σ to a larger semigroup, called quasidivisors, which (in the rational

case) precisely corresponds to extending the set of (Cartier) divisors by
allowing some of the divisor coefficients to be +∞. To this end, we make
the following definitions.

Definition 29. Define
¬
R := R ∪+∞ and

¬
Z := Z ∪+∞.

These have the structure of ordered semigroups in an obvious way

(with ∞ + k = ∞ for any k ∈
¬
R), and we can rescale elements of

¬
R by

R+, with 0 ·+∞ := 0. Now for Σ = Σσ an affine fan, define QDivR
σ to be

the set of maps of semigroups σ →
¬
R which commute with scaling. This

is equivalent to the following definition.

Definition 30. QDivR
σ is the set of functions α : σ →

¬
R which take finite

values on a single face τ ⊂ σ (of arbitrary dimension ≥ 0) and are linear
on that face.

We also define

Definition 31. If σ is rational QDivZ
σ ⊂ QDivR

σ are those functions which

take values in
¬
Z ⊂

¬
R on σ ∩N .

If Σ is not affine, we define QDivR
Σ and QDivZ

Σ to be functions VΣ →
¬
R

which satisfy the conditions above on each (closed) cone σ:

Definition 32. QDivR
Σ, resp. (if Σ is rational), QDivZ

Σ, is the set of

functions α : VΣ →
¬
R such that α | σ ∈ QDivR

σ for each σ ∈ Σ, respectively,
such that α | σ ∈ QDivZ

σ for each σ ∈ Σ.
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We say that a (R-)quasidivisor is
1. effective, if α takes values in R+ ∪∞;

2. finite, if α ∈ QDivR ⊂ QDiv;

3. principal, if α = 〈λ, ·〉 for some λ ∈ Λ (in particular, such quasidivi-
sors are finite),

4. affine, if α = +∞ outside a single cone σ ∈ Σ;

5. semiample, if α is convex up, i.e. if α(x + y) ≤ α(x) + α(y) (in an
ordered semi-group sense), and

6. ample, if α is semiample and α(x + y) = α(x) + α(y) if and only if
either α(x+ y) =∞ or x, y both belong to some cone σ.

4.4 Sheaves associated to quasidivisors and R-quasidivisors
We make the following definition.

Definition 33. Given an R-quasidivisor α on an affine fan Σσ, define
the set

∆α(= ∆σ
α) := {λ ∈MR | 〈λ, y〉 ≤ −α(y)∀y ∈ σ.}

Note the negative sign −α in the definition. This is the same sign
that comes in the definition of a line bundle associated to a divisor: the
larger the multiplicity of D in a divisor, the more negative the (ID-adic)
valuation of functions allowed in the ideal.

All ∆α for α finite are shifts of σ∨. Indeed, there is some λα such that
α = 〈λα, ·〉 | σ, and then ∆α = σ∨ − λα. Note that the shift vector λα is
not in general unique, as σ∨ has additive symmetry by σ⊥: rather, it is
unique up to an additive factor of σ⊥. Now define aσα := k(∆̊α). This is
a graded Oσ-module isomorphic in a non-graded way to aσ. Recall that a
general quasidivisor α is finite precisely on some face τ ⊂ σ, and then ∆α

is a shift of τ∨.

Definition 34. Given an R-quasidivisor α ∈ QDivR
Σ, define the TNov-

equivariant sheaf O(−α) ∈ Qcoha(XNov
Σ )TNov to be the sheaf which on

the affine XNov
σ ⊂ XNov

Σ has sections k(∆α), and with obvious transition
maps. Similarly if Σ is a rational fan and α ∈ QDivZ

Σ is an integral
quasidivisor, define the T -equivariant sheaf O(α) to be the sheaf which on
the affine Xσ has sections k(∆α ∩M).

It is immediate to check that these indeed glue to give equivariant
and, in the Novikov case, almost local, sheaves. These sheaves will be the
objects corresponding to opens of the Dolan topology, defined in the next
section.

5 The Dolan Topology and the Abelian
Coherent-Constructible Correspondence
Associated to any fan Σ we will define a Grothendieck topology ΘR on
the poset QDivR which we call the “Dolan-Novikov topology”. When Σ
is rational, we also define an integral subtopology on QDivZ, the “Dolan
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topology”. The main result of this section will be the Abelian coherent-
constructible correspondence, i.e. the equivalence of the equivariant al-
most coherent category Qcoha(XNov)TNov with sheaves on ΘR. Similarly,
we will show that when Σ is regular, we have a an equivalence in the
non-Novikov (classical algebro-geometric) context Qcoh(X)T ∼= Shv ΘZ.

Remark 2. Assuming regularity in the rational case allows us to avoid
a few topos-theoretic difficulties that come up in the rational non-regular
case (since the Dolan site is better behaved, in particular having all in-
tersections). With a little more work, we can recover the equivalence of
Abelian categories Qcoh(X)T ∼= Shv(ΘZ

Σ) for arbitrary rational Θ, and
this, along with a proof of the classical coherent-constructible correspon-
dence for non-smooth varieties will be done in [Appendix:non-smooth].
Surprisingly, none of the issues arising for non-regular fans in the ratio-
nal context come up in the Novikov context.

5.1 Grothendieck topology on a poset
In this section, some reminders about Grothendieck topologies. The cate-
gories QDivZ,QDivR on which our topologies are defined are particularly
nice in some of the same ways in which topoi coming from a topological
space are nice: the underlying categories are posets, they have all inter-
sections (i.e., they are “meet semi-lattices”) and the covering families we
introduce can be easily checked to be “strongly epic”. In this situation, the
theory simplifies and we use full advantage of these special simplifications
in our definitions and results. In [Appendix on topoi] we will upgrade
some of these results to be able to deal with the M -equivariant analogues
τ of τ .

Suppose a category C is a poset. Then a Grothendieck topology on C
consists of the following data satisfying the following conditions.

Definition 35. Suppose C is a poset. A Grothendieck topology Θ on C
is a collection, CovX , for every object X ∈ C, of sets of subobjects U 4 X.
The poset C and the set of covering subcategories is required to satisfy the
following conditions.

1. (Identity) The set {X} is a covering of X.

2. (Existence of pullbacks) Given any map U 4 X with an element of
some U ∈ CovX , and any map Y → X, the pullback U ×X Y exists
(for a poset, a pullback is also called a “meet”).

3. (Basechange) Given a U ∈ CovX and any map Y → X, the set of
basechanged maps U ×X Y

ι×XY- Y is a covering of Y as U
ι- Y

goes over objects of U .
4. (Subdivision) If UX ∈ CovX is a covering of X and UU ∈ CovU is a

collection, for each U ∈ UX , of coverings, the “subdivided covering”⋃
U∈U

UU

is a covering of X.
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All the Grothendieck topologies we consider will be “strong”, i.e. have finite
limits, and covering families will be strong epimorphisms (see [Appendix:
sites]).

Definition 36. A map of strong Grothendieck topologies α : Θ→ Θ′ is a
functor of underlying categories in the opposite direction,2 α−1 : C′ → C,
such that

1. (Covering.) If UY is a covering of Y then f−1(UY ) is a covering of
f−1(Y ) and

2. (Continuity.) The functor f−1 respects pullbacks

Note that for Grothendieck topologies which are not strong, the cover-
ing and continuity properties need to be replaced by slightly more subtle
properties.

5.2 The Dolan and Novikov-Dolan topologies
Definition 37. Let QDivR,4 be the category of quasidivisors with mor-
phisms given by the partial order d 4 d′ if d(x) ≤ d(x) pointwise. We
say that the set di cover d if di 4 d and the supremum sup(di(x)) = d(x)
for any x ∈ NR. Write Θ(= ΘΣ) for QDiv with this notion of open cover.
Define ΘZ(= ΘZ

Σ) for the category QDivZ ⊂ QDivR with induced partial
order and collection of open covers.

Lemma 25. The assignments of open cover Θ,ΘR define Grothendieck
topologies.

Proof. Note that Θ and ΘZ have all limits. Checking this is equivalent
to checking the existence of a terminal element and fibered product. The
terminal element is the infinite quasidivisor,

d∞ : x 7→

{
0, x = 0

∞, x 6= 0

Existence of fibered products in a poset is equivalent to existence of meet
(highest lower bound), which is given by d ∩ d′ := inf(d, d′). Existence of
pullback follows. Identity, basechange and subdivision are obvious.

Now we are finally able to state the main result of this section.

Theorem 26 (Abelian coherent-constructible correspondence). Suppose
that Σ is a fan. Then we have equivalences of Abelian categories

1. Shv(Θσ) ∼= Shva(XNov
Σ )TNov ,

2. if Σ is rational, we have an equivalence of Abelian categories Shv(ΘZ
σ) ∼=

Shv(XΣ)T .

2This is to model the “pullback of opens” functor UY 7→ f−1(UY ) ⊂ X associated to a
map of topological spaces f : X → Y
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5.3 Push-pull functors for fan inclusions
Suppose Σ′ ⊂ Σ is a sub-fan (we will mostly be using affine Σ′ = Σσ for
σ ∈ Σ a cell). We define two maps ισσ′ : ΘΣ′ → ΘΣ and πσσ′ : ΘΣ → ΘΣ′

as follows. Suppose d : VΣ → R is an R-quasidivisor and d′ : Vσ′ → R is
an R-quasidivisor.
Definition 38. We define

ι−1(d) := ι | V ′Σ

and

π−1(d) : y 7→

{
d(y), y ∈ VΣ′

∞, else.

We write ισ for ιΣσ,Σ, and similarly for πσ.

Proposition 27. The functors ιΣΣ′ , πΣΣ′ are morphisms of Grothendieck
topologies.

We see this by checking compatibility with covers and intersections.
Fixing a map Σ ⊂ Σ′, write ι∗, ι∗, π∗, π∗ for the pullback and pushfor-
ward functors between Shv(Σ), Shv(Σ′). These sheaves have an extremely
unusual relation (compared to what one would expect for topological or
étale sites):

Lemma 28. There is a natural isomorphism between the functors π∗, ι∗ :
Shv(Σ)→ Shv(Σ′).

Proof. Given a sheaf V on Σ, denote Vd for Γ(V, d) for d ∈ QDiv(Σ).
Suppose V is a sheaf on Σ and d′ is a divisor in QDivΣ′ . Then ι

σ
∗ (V)d′ :=

Vι−1(d′)
∼= Vd′|Σ, where d′ | Σ is a restriction of d′ viewed as a function on

the support of Σ′ to the support of Σ′. On the other hand, π∗σ(V)d′ :=
lim
→
V ′d | π−1(d) < d′. But π−1(d) < d′ if and only if d < ι−1(d′), and in

particular the poset d′ | π−1(d′) < d has an initial element, d = ι−1(d′).
Thus ι∗(V)∗σ ∼= π∗(V)σ, and it is an immediate check that this isomorphism
is compatible with restriction maps and functorial.

This fact will be extremely useful for us, and implies in particular that
π∗ has an easily accessible left adjoint ι∗ (such a functor can with some
legitimacy be called π!). Further, since ι∗ = π∗, both ι∗ and ι∗ are exact
(this corresponds to the fact that both pullback and pushforward from an
open subvariety is exact).

5.4 Points
Recall that a Grothendieck topology has a notion of point which general-
izes the notion of a point of a variety, and that for general Grothendieck
topologies points form a category rather than just a set, and the functor of
“stalks” produces a representation of this category starting from any sheaf
V. When there are “enough points” (as we shall see to be the case for the
Novikov-Dolan topology ΘR and its relatives), we can check isomorphism
of sheaves on stalks. As we shall see, stalks at points in the Dolan topol-
ogy correspond to (graded components of) restrictions to affine opens of
XNov.
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Definition 39. A point of a Grothendieck topology (C,Θ) is a functor C →
Oppt, where Oppt is the Boolean category {∅ → pt}, which is compatible
with intersections and open covers3.

Now suppose Σ = Σσ is an affine fan, and say m ∈ MR/σ
⊥ is a point

of the dual poset associated to σ. Then we define the following functor
from QDivσ to Sets:

Þm(d) :=

{
pt, ∆d 3 m
∅, otherwise.

Write StÞσm(V) for the stalk of V at the point Þσm Now any map of
Grothendieck topologies sends points to points (in a functorial way). If
Σ is an arbitrary flag and σ ∈ Σ is a cone with m ∈ M/σ⊥ as before,
write Þσm := ισ(Þm), for Þm the point of Θσ as above. Note that this
construction gives new points in Θσ itself, corresponding to pushforward
of points from Θτ for τ 4 σ.

Lemma 29. Let Σ be a fan. The collection Þσm is a separating collection
of points for ΘΣ.

Proof.

Lemma 30. Let d ∈ QDiv be a divisor and V ∈ ShvT be a sheaf. Then
Γ(d,V) ∼= lim

→ σ∈Σ
op
4

St(Þdσσ ), via the evident diagram of inclusions Þdττ ⊂

Þdσσ for τ ⊂ σ cones, compatible with the inclusions Þdσσ ⊂ d.
It is obvious that the characteristic sheaves of open sets kd are a sepa-

rating collection of sheaves for d ∈ QDiv. Now the colimit of all skyscraper
sheaves δÞmσ for Þmσ ∈ d is kd, and so the Þmσ separate.

5.5 The Abelian coherent-constructible correspon-
dence
We are ready to define a pair of inverse functors between Qcoha(XNov

Σ )TNov

and Shv(Θ). Namely, consider the collection of equivariant sheaves Od for
d ∈ QDiv. We have obvious maps Od → Od′ for d 4 d′, which give a
representation of the coset QDiv .

Lemma 31. The Od form a cosheaf of objects of Qcoha(XNov
Σ ) over Θ.

Proof. Working locally, it is sufficient to show this for an affine open
Xσ ⊂ XΣ. Using almost locality, Hom(Od,F) = Hom(Od ⊗ a∂ ,F), with
Od ⊗ a∂ locally given by k(∆̊d) Thus, using Proposition 15, it is enough
to show that the shifted open cones ∆̊d satisfy the sheaf property for
d ∈ QDiv(Σσ), which is obvious.

Now associated to the cosheaf OQDiv, we get a pair of functors: F :
Qcoha(OQDiv)TNov � Shv(ΘΣ) : G, defined as follows.

Γ
(
F (F), d

)
:= Hom(Od,F)

3Here again we are using the strong surjectivity property
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Γ(G(V), Xσ)〈m〉 := StÞσm(V).

We refine the Abelian ccc to the following lemma.

Lemma 32. The functors F,G defined above are mutually inverse equiv-
alences, as are their integral analogues FZ, GZ.

We will prove this lemma bit by bit in the remainder of the section.
We work mostly with the Novikov case and functors F,G and only treat
the classical case FZ, GZ separately when the arguments from the Novikov
case do not translate in an obvious way. Recall that we have sub-posets
DivR ⊂ QDivR and DivZ ⊂ QDivZ of “finite” divisors. Since these posets
are cofiltering, any cover of an element of DivR consists of other elements
of DivR and intersections in DivR agree with intersections in QDivR .Write
Θf

Z ,Θ
f
R for the induced Grothendieck topology on DivZ,DivR .We have the

following result:

Proposition 33. For any fan Σ, we have an equivalence of Abelian cat-
egories Shv(Θf

R) ∼= Shv(ΘR) and, if Σ is rational, Shv(Θf
Z) ∼= Shv(ΘZ).

Proof. This follows from the fact that divisors are cofiltering (i.e. closed
with respect to taking subobjects) and generating in quasidivisors (i.e.
any quasidivisor has a covering by divisiors).

Now we proceed in stages.

5.5.1 Affine, rational fan Σσ

Assume Σ = Σσ is affine and rational, and we are considering the site
ΘZ. Then note that the topology Θf

Z is trivial — i.e. any open cover
of a finite divisor d contains d itself as a terminal element. This means
that Shv(ΘZ) ∼= Shv(Θf

Z) ∼= Rep(DivZ), where Rep(DivZ) is the category
of representations of the poset DivΣ . On the other hand, an object F
of Qcoh(XΣ)T is an M -graded representation of the graded semigroup
Λσ ∩M . Let F〈m〉 be the m-weight component of F , for m ∈ M . Then
the action tλ takes F〈m〉 7→ F〈m + λ〉. The relations between λ ∈ Λ
amount to the statement that all maps F〈m〉 → F〈m + λ〉 obtained as
compositions of ρλi for λ1 + · · · + λk = λ are equal, i.e. that F〈·〉 is a
representation of the poset Mσ, equivalently a presheaf on Θf

Z .

5.5.2 Affine, Novikov fan Σσ

Now consider the Novikov case. An object of Qcoh(XNov
Σ )TNov is an

MR-graded representation of Λσ, equivalently as above a presheaf on
Θf

R. However, in this case while Θf
R is still cofiltering and generating

(and hence has the same category of representations as ΘR), its cate-
gory of sheaves and presheaves are not the same, as we have nontrivial
covers. For example for M = R and σ = R+, where Div ∼= R, any
upper-bounded collection of numbers which never attains its supremum
s, such as −1,−1/2,−1/3, . . . , will give a nontrivial cover of s. For gen-
eral affine Σ = Σσ, we once again identify DivΣ

R with the poset Mσ
R .

Covers of the form m1 4 m2 4 . . . converging to some m ∈ Mσ
R will

generate the topology. The sheaf condition on a presheaf F is then that
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limF〈mi〉 ∼= F〈m〉 for m1 4 m2 4 . . . 4 m as above. Now note that
F〈m〉 = Homgr(k[∆m],F), so by the exactness property of Hom, we have
limF〈mi〉 = Homgr(k[∪i∆mi ],F). Now there is a sequence of mi such
that ∪∆mi = ∆̊mi , so that Homgr(k[∆̊m],F) = Homgr(a ⊗ Om,F), so
the sheaf condition implies the map F → Hom(a,F) =

⊕
m∈MR

Hom(a⊗
Om,F) is an isomorphism, i.e. F is almost local. Conversely, suppose
F ∼= Hom(a,F). Then Hom(a′,F) ∼= Hom(a′,Hom(a,F)) ∼= Hom(a ⊗
a′,F) ∼= Hom(a,F) ∼= F .

5.5.3 General Σ

Suppose Σ is a Novikov fan and F ∈ Qcoha(XNov)TNov is an equivariant
quasicoherent sheaf. Suppose that Þmσ is a point. Then

StÞmσ F (F) := lim
→ d→Þmσ

F (F)d ∼= lim
→ d→Þmσ

Hom(Od,F) ∼= Γ(X,F⊗Oσ)〈m〉.

Further, these identifications are functorial and compatible with restric-
tion maps, establishing that G ◦ F ∼= Id. In the other direction, suppose
that V is a sheaf on Θ. We have a restriction map Vd → ⊕Þmσ ∈dStÞ

m
σ V

which glues to a map Vd → colimÞmσ ∈d StÞ
m
σ V. Now using the definition

of the functor G and the affine Čech resolution for maps of quasicoherent
sheaves, this colimit is canonically colimÞmσ ∈d StÞ

m
σ V ∼= Homgr(Om,Vd).

This gives a map Id → F ◦ G of endofunctors of Shv Θ. To check it is a
natural isomorphism, it is sufficient to see this on a separating collection
of stalks, specifically on the StÞmσ , which is obvious. An analogous ar-
gument shows that FZ, GZ are inverse functors. This concludes the proof
of Lemma 32 and hence of the Abelian coherent-constructible correspon-
dence (Theorem 26).

6 The Equivariant Novikov Coherent-Constructible
Correspondence
In previous sections, we have used again and again the geometric nature
of the category QDivR

Σ and the polyhedra ∆d as combinatorial bookkeep-
ing tools. In this section this geometric nature comes to the forefront.
We will use this geometry to define the coherent-constructible correspon-
dence (dg) functors, B∗ and B∗. It then turns out to be almost immediate
to check, using the formalism of points we have developed and a result
in [FLTZ], that these functors are mutually inverse. From now on, we
work with the formalism of DG categories, and all limits, pushforwards
and pullback functors we will work with will be replaced by their derived
analogues (using the usual derived convention of taking injective resolu-
tions for computing pushforwards). We work with the injective derived
categories D+(Shv(ΘR)), etc. using that all the categories we are working
with have enough injectives; we think of Db as objects of D+ with finitely
many nonzero homology groups.
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6.1 Affine resolution of sheaves
Before defining the mirror symmetry functors, we write down a result
which will be very useful for us for deducing results for sheaves on Σ from
affine analogues.

Lemma 34. Suppose the fan Σ is complete. Then the functor Id :
Shv(ΘR)→ Shv(ΘR) is the homotopy inverse limit in the derived category
of the diagram of exact functors ισ∗ ι∗σ indexed by Σop4 , and with connecting
morphisms given by adjunction.

Proof. It is enough to show the natural map is an isomorphism on stalks.
Now note the equivalence of exact functors

StÞσm ◦ ισ
′
∗ ◦ ι∗σ) ∼= StÞσm ◦ π∗σ′ ◦ ι∗σ ∼= StÞσ∩σ

′
m .

It follows that the diagram lim
← σ′

StÞσm(lim
←
ισ
′
∗ ι
∗
σ′)
∼= lim
← σ′∈Σ

op
4

StÞσ∩σ
′

m col-

lapses to the subdiagram {σ′ | σ′ 4 σ}op, which has an initial element,
σ.

6.2 Defining the Bondal functors B∗, B
∗.

Let Op(MR) be the Grothendieck topology of open sets in MR. For σ ∈ Σ
a cone, we make the following definition.

Definition 40. We define a map of Grothendieck topologies Bσ : Op(MR)→
ΘR
σ, with B−1(d) := ∆̊d.

From this we get a pair of adjoint functors B∗σ : Shv(Θσ)→ Shv(MR)
and Bσ∗ : Shv(MR)→ Shv(Θσ), whose derived functors constitute the full
coherent-constructible correspondence for affine toric varieties.

Now if Σ is not affine, we can still get functors from Shv(ΘΣ) to and
from Shv(MR) by pushing and pulling along the composed map of topolo-
gies

Bσ,Σ := ισ ◦Bσ : MR → Θ.

Now for general topological spaces, maps of topologies themselves form
a category (which should be considered as a full subcategory of functors
of topoi). In order to get our derived coherent-constructible functor, we
will put the maps Bσ,Σ into a diagram and take its colimit; this will
give us an object of some category of derived correspondences. For the
sake of brevity, we will not define any such category, but rather explicitly
define its pushforward and pullback functors B∗, B∗ as homotopy limits
and colimits (which we will write as explicit chain complexes) of suitable
diagrams with entries Bσ,Σ∗ and B∗σ,Σ, respectively.

Recall that π∗ = ι∗, so ι∗ is left adjoint to π∗. In particular, we have
adjunction maps Id→ ι∗π∗, π∗ι∗ → Id and, adjointly, Id→ ι∗π∗, π∗ι∗ →
Id. Now write BτΣ = ιτΣBτ = ισΣιτσπτσBσ. Then replacing each map
by its pushforward, we can compose it with the map Idσ → ιτσ∗ π

τσ
∗ to get

a map rστ : BσΣ
∗ → BτΣ

∗ of functors Shv(MR) → Shv(ΘR). Conversely,
on pullbacks we compose with the counit map π∗τσ ◦ ι∗τσ → Idσ to get a
natural transformation, qστ : B∗τΣ → B∗σΣ. Note that the functors qστ form
a representation in functors of the poset Σ4 and the functors rστ form a

34



representation of its opposite. We want to define the Bondal functor B∗
as the homotopy limit of the BσΣ

∗ along the r maps and, adjointly, B∗ as
the homotopy colimit of the B∗σΣ along the q maps. Later on, we will give
an explicit model for this colimit as a complex of functors applied to an
injective resolution of V.

6.3 Full faithfulness of B∗

From now on, assume that the Novikov fan Σ is complete. We use
a category-theoretic trick (explained to the author by Roman Bezrukavnikov)
to prove the following Lemma.

Lemma 35. The functor B∗R : Shv(ΘR)→ Shv(MR) is fully faithful (as a
functor of DG categories).

Recall that an objectX of a dg category C is compact if for any diagram
of objects D : I → C, taking RHom with X preserves (homotopy) colimit
along I. Specifically, for small index category I, we require:

∀D : I → C admitting a direct limit, we have
RHom (X, colimi∈I D(i)) = colimi∈I RHom(X,D(i)).

Recall also that a collection of objects Xi colimit generate a DG category
C if every object of C can be expressed as a colimit of the Xi. (Note that
there are different notions of DG generation and this is the strongest).
Then we have the following categorical proposition.

Proposition 36. Suppose F : C → D is a functor of DG categories
that commutes with colimits and Xi is a collection of compact objects that
colimit generate C, such that F (Xi) are also compact. Then F is fully
faithful if and only if Fij : RHomC(Xi, Xj) → RHomD(F (Xi), F (Xj)) is
a quasiisomorphism for all pairs i, j.

Proof. For any pair of objects X,Y ∈ C, we can express X = limI Xi and
Y = limJ Xj . Then by compactness, RHom(F (X), F (Y ))

∼= colimIop RHom(F (Xi), F (Y )) (by colimit compatibility) (13)
∼= colimIop colimJ RHom(F (Xi), F (Yj)) (by compactness of F (Xi) )

(14)
∼= colimIop×J colim RHom(Xi, Yj) (by faithfulness on generators)

(15)
∼= RHom(X,Y ) (by reverse arguments in C).

(16)

We apply this proposition with F the functor B∗ (which commutes
with colimits because it is a left adjoint) and take for the collection of
generators the sheaves Od, using the following proposition.

Proposition 37. The objects Od for d finite quasidivisors are a collection
of compact generators for D− Shv(ThetaR).
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Proof. To see the Od are compact, using lemma 34 (or the affine-local
nature of computing RHom on XNov

Σ ), it suffices to check that Od for
finite d is compact in the affine case Σ = Σσ. But in this case the Od are
isomorphic to one-dimensional free modules, hence compact in Rep(Oσ)
itself (and therefore, a fortiori, in Repa(Oσ)). Now any Od for d not
necessarily finite is a direct limit of finite Od. Thus in order to show
the finite Od colimit-generate, it suffices to show all Od colimit-generate.
Once again using Lemma 34, we have V ∼= lim ισ∗Vσ together with the
fact that finite inverse limits are (shifted) direct limits in the derived
category, we reduce to the affine case, Σ = Σσ. Now since the forgetful
functor from sheaves to presheaves is left exact, it commutes with direct
limits and hence it suffices to show the Oσ colimit-generate the category
of presheaves, i.e. equivariant modules over Oσ. But this is standard: any
module has a left resolution by free modules. (Note: we are using that
the category PreSh(Θ) has both enough projectives and enough injectives,
and so for objects of the bounded derived category, Ext can be computed
using either definition).

It follows that in order to check derived full faithfulness, it suffices to
check it on the full subcategory of Od. In fact, we can do one better using
Lemma 34 to reduce to pushforwards ι∗Oσd from affines. Now

RHom(ισ∗Oσd , ισ
′
∗ Oσ

′

d′ ) ∼= RHomΘσ′ (ι
∗
σ′ ι

σ
∗Oι∗d)

∼= RHomΘσ′ (π
σ′
∗ ι

σ
∗Oι∗(d),Oι′∗(d′)) ∼= RHomΘσ′ (Oι∗σ∩σ′ (d)Oσ′∗d′)

∼=

{
C, σ ⊂ σ′ and m 4σ m′

0, else.

(We know how to RHom out of Oσ in Rep(Oσ), and view Oσ′∩σ′ ∈
Rep(Oσ) as a direct limit of shifts of Oσ, to get a colimit expression
(with all connecting maps isomorphisms) to compute the derived Hom’s
above. It follows by Proposition 3.3 of [FLTZ] that the functor B∗ is in-
deed faithful on the O

π−1
σ (d)

, from which we deduce faithfulness on finite
Od and thence by finite generation on all of Shv(ΘR), completing the proof
of faithfulness of B∗.

6.4 Essential surjectivity
It remains to check B∗ is essentially surjective, or equivalently the follow-
ing lemma.

Lemma 38. The counit map B∗B∗ : Shv(MR)→ Shv(MR) is the identity.

Proof. Let S be a sheaf onMR. It suffices to check the map B∗B∗S → S is
an isomorphism on stalks Stm form ∈MR, or, equivalently on dual stalks,
(taking δm fo the skyscraper sheaf on a point m) that Hom(S, δm) →
Hom(B∗B∗S, δm) is an isomorphism. Now we write Hom(B∗B∗S, δm) ∼=
Hom(B∗S,B∗δm). In the affine case whereB is a genuine map of Grothendieck
topologies, Bσ∗ δm ∼= δB(m)

∼= δÞσm. Since B∗ is glued out of the Bσ∗ , we get
B∗δm ∼= lim

←
δÞσm. Now the stalk at StÞmσ of Bσ∗S is equivalent to the global
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sections of S pulled back to π−1
σ (StÞmσ )

(
= ∩StÞmσ ∈π−1(∆̊σ

d
)π
−1
σ (∆̊σ

d )
)
. We

write this as St∆mσ (S).Using a stalkwise argument, we see that limσ St∆mσ (S)
is the shifted stalk functor Stm, and the Lemma follows.

This concludes the proof of the equivariant Novikov ccc.

7 Singular Support Conditions and Sub-
topologies
Now suppose that Σ is a regular fan. Recall that we have a sub-category
QDivZ ⊂ QDivR with induced topology, which corresponds to a projection
map on topologies, πRZ : ΘR → ΘZ. We define adjoint “integral Bondal
functors”

B∗Z := B∗ ◦ π∗RZ
and

BZ
∗ := πRZ

∗ ◦B∗.
Since πRZ

∗ π
∗
RZ
∼= Id : Shv(ΘZ)→ Shv(ΘZ), we see that π∗R is fully faithful,

and hence so is B∗Z . It follows from [FLTZ] that the image of B∗Z has
singular support contained in Λ. Thus it remains to check that if S is a
complex of sheaves with singular support contained in Λ, then B∗ZBZ

∗S ∼= S
(via the natural adjunction counit). Using Lemma ??, it is enough to
check that in the affine case Σ = Σσ, we have the identity BZ

∗ (S) ∼=
BR
∗ (S) (under singular support restrictions on S). Equivalently, this is

asking that the derived sections functor RΓ(∆d,S) does not change for
d ∈ QDivR so long as the “highest lower bound” bdc ∈ QDivZ does not
change. This is precisely guaranteed by the singular support condition.
This completes the proof of Theorem 1, and using Theorem 11 we deduce
the coherent-constructible correspondence ?? for smooth, proper varieties.
(See Appendix [Appendix:non-smooth] for a natural extension to non-
smooth and non-affine varieties, both of the classical and the Novikov
type).

8 Log-Perfectoid Mirror Symmetry Inter-
pretation

8.1 From Novikov varieties to perfectoids
Suppose A ⊂ Rn is an arbitrary dense Abelian group containing a lattice
M . Define TNov−A for the algebraic group Spec k(A) (if A ⊂ Q⊗M, this
is a profinite cover of the torus T ). Write Γ := (A/M)∼(:= Spec k[A/M ])
this should be thought of as an algebraic version of the Galois group of
the cover TNov−A → T . For a rational and regular4 fan Σ, write XNov−A

Σ

for the space glued out of the affine Novikov pieces Spec k[A ∩ σ∨] (just

4one can weaken both the rationality and the regularity conditions
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replacing MR by A in the definitions of XNov
Σ ). The category of quasi-

coherent sheaves on XNov−A
Σ has a well-defined almost-local subcategory,

QcohXNov−A
Σ (defined locally on affines as an idempotence condition for

the ideal aσ, as for XNov
Σ ). By repeating the arguments of sections 1-8

above, we get the following results.
The categoryDb QcohaXNov

Σ
∼= Db Shv(ΘA), where ΘA(= QDivA,ΘA)

is the sub-topos of Θ on quasidivisors d ∈ QDivR
σ such that for each σ ∈ Σ,

the restriction d | σ is the restriction to σ of an element of A ⊂M∗R (viewed
as a function on σ ⊂ MR). Consider the map of Grothendieck topologies
πAR : ΘR → ΘA (with π−1(d) = d for d a quasidivisor).

We use the following lemma.

Lemma 39. The pushforward and pullback functors along πAR are mu-
tually inverse isomorphisms between Shv(ΘA) and Shv(ΘR).

Proof. Since A is dense, the subtopology ΘA generates ΘR. In order to see
that they define equivalent categories, it is sufficient to check that every
cover of a divisor d ∈ QDivR can be refined by a cover with all objects
in QDivA and that any two such covers have a common refinement (also
only involving objects in A). This is once again clear from the density of
A.

It follows that (QcohaXNov−A
Σ )TNov−A ∼= Shv(MR) and hence, by the

Pontrjagin duality theorem in section 11, we get the following theorem,
which implies the main theorem 5.

Theorem 40. In the setting above, we have an equivalence of derived
categories

(QcohaXNov−A
Σ )(A/M)∼ ∼= Shv(S).

8.2 Log-perfectoid sheaves
Inspired by Theorem 40, we write down here a general procedure for ob-
taining a new quasicoherent category associated to a pair of spaces (U,X)
with normal complex complement, and make some conjectures about in-
dependence on choice of X. Assume for simplicity that the base field k
has characteristic zero. Suppose that U is a variety and X is a compacti-
fication. Suppose that ∂ := X \ U is a normal crossings divisor. Assume
that the algebraic fundamental group of U maps surjectively to the local
fundamental group (spanned by ramification) of the neighborhood of any
point of ∂. (If this is not the case, we can remove some extra divisors from
the interior of U to enlarge the fundamental group, then glue in an invari-
ant procedure, but we will not worry about this level of generality here.)
Let ΓU be the geometric fundamental group of U . Let ΓN be a cofiltering
family of finite quotient groups with inverse limit ΓU . Let U (N) be the
corresponding étale covers of U . For each boundary component ∂i ⊂ ∂,
let IiN ⊂ ΓN be a ramification group associated to ∂i (note that it depends
on the choice of a branch of the cover near ∂i). Now there is a unique
finite flat extension of the family U (N) over U to a flat ΓN -equivariant
family over U ∪ ∂̊i ⊂ X. The preimage of ∂̊i will be |ΓN/IiN | copies of ∂i
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with multiplicity |IiN |. Glueing such extensions, we extend to a cover of
the codimension-two subvariety

U ∪
⋃
∂̊i ⊂ X.

There is a unique extension of this family to an affine family over X:
étale locally over any component of the preimage of some (possibly high-
codimension) boundary component ∂0, the map will look isomorphic to a
product of power maps (x1, . . . , xn) 7→ (xN1

1 , xN2
2 , . . . , xNnn ) : An → An.

Now the pro-sequence of affine maps X(N) → X will have a well-
defined projective limit scheme X(∞) which is affine over X, and has
action by Γ, where (abusing notation), we view Γ also as an affine projec-
tive limit of affine (group) schemes. Let ∂(∞) ⊂ X(∞) be the boundary.
Our condition on ramification behavior of Γ implies that the category of
sheaves on X(∞) pushed forward from ∂(∞) is a Serre subcategory. We
define Qcoha(X(∞)) to be the quotient of Qcoh(X(∞)) by the Serre sub-
category of sheaves pushed forward from ∂(∞). This category has natural
action by the group scheme Γ. Define Qcohlog-perf(X) to be the category
of Γ-equivariant quasicoherent sheaves in Qcoha(X(∞)). Note that while
our definition uses the (possibly very large and non-commutative) Galois
group Γ, the stabilizers of the stacky points of X(∞)/Γ∞ will be tame.
Specifically, they will all be products of ramification groups of several
∂i, and in particular commutative. Thus we could define the category
Qcohlog-perf(X) starting not with the full Galois group Γ but with any
continuous subgroup Γ′ of Γ which maps surjectively to local ramification
groups (in fact, it should be possibly to replace surjectivity by a density
requirement).

If U = T and X is a toric variety, the Galois group of T (viewed as
a group scheme) is Γ ∼=

(
(Q/Z)∼

)n. A canonical choice of tower X(N)

is provided by the N -frobenius maps, induced from the maps of lattices
NΣ → N ·NΣ without changing the fan (with apologies for the awkward
notation: N is an integer and NΣ is the lattice). Theorem 40 then im-
plies that Qcohlog-perf(U,X) is equivalent to the category of quasicoherent
sheaves on S. In particular, it is independent of choice of X. This leads
us to make the following conjecture.

Conjecture 1. Assume the base field k = C. Then for any U , the derived
category Db Qcohlog-perf(U,X) is independent of choice of (n.c.) compact-
ification X.

If this is true, we would have a well-defined categoryDb Qcohlog-perf(U)
depending only on an open variety, and this would perhaps be the right
category to study for some wider class of mirror symmetry statements for
open varieties. Further, whether of not this conjecture is true, SYZ mirror
symmetry provides us with an abundance of pairs of varieties (U,X),
where X is an algebraic Calabi-Yau manifold admitting an SYZ torus
fibration with singularities, and U ⊂ X is the complement to the space of
singular fibers (which has codimension 2 and is in fact algebraic). Suppose
U,X is such a pair and letM be the symplectic manifold obtained from the
dual torus filtration on the nonsingular fibers. Then we ask the following
question.
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Question. Is there a way to define a “large” Fukaya category Fuk?(M)
on M (which for T ∗S1 would be equivalent to the derived category of all
topological sheaves on S1) such that there is an equivalence of categories
Fuk?(M) ∼= Db Qcohlog-perf(U,X)?
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