Mirror symmetry on the Bruhat-Tits building
and the K theory of a p-adic group
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Abstract

Let G be a split, semisimple p-adic group. We construct a derived
localization functor Loc : D’Smy, — DSh from the compactified cate-
gory of [BK2] associated to G to the category of equivariant sheaves on
the building whose stalks have finite-multiplicity isotypic components as
representations of the stabilizer. Our construction is motivated by the
“coherent-constructible correspondence” functor in toric mirror symme-
try and a construction of [CCC]. We show that Loc has a number of useful
properties, including the fact that the sections RT Loc.(V) = V when V
is an object of Smy, compactifying the finitely-generated representation
V. We also construct a depth-< e “truncated” analogue Loc(.) which has
finite-dimensional stalks, and satisfies the property RI'. Locy(V) =V
for any V of depth < e. We deduce that every finitely-generated repre-
sentation of G has a bounded resolution by representations induced from
finite-dimensional representations of compact open subgroups, and use
this to compute the K-theory of G in terms of K-theory of its parahoric
subgroups.
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0 Introduction

0.1 K theory of the representation category

Let G be a split, semisimple p-adic group, and let Smy,(G) be the cat-
egory of idempotented finitely-generated representations of the Hecke al-
gebra H(G) with values in C (equivalently, smooth finitely-generated rep-
resentations of G, see e.g. [Ber]). The category Smyy(G) is extremely
well-behaved: it is a direct sum of countably many Noetherian compo-
nents, has enough projectives, and has finite homological dimension equal
to the rank of the group. In particular, the category has a well-behaved
K-theory, with K°(Smy4(G)) the Grothendieck group of projectives in
Smyy(G). Write
K°(G) := K" (Smyy(@)).

The group K°(G) will be a central object of study in this paper. The
rational coefficient version K°(Smy,(G)) ® Q was considered in the pa-
pers [BDK] and [D], and is related to the character theory of admissi-
ble representations of G. Indeed, given any admissible representation A
and finitely-generated representation V, the graded spaces Ext(A, V) are
finite-dimensional and zero for ¢ > n+1 (for n the rank of G). The signed
sum (A, [V]) := 32 (~1)" dim Ext‘(A4, V) then defines, for each admissible
A, an integral functional on K°(G). Rationally, the group K°(G) was
computed by Dat [D], who showed that the group KO(G) ® Q naturally
pairs with the vector space of central distributions on compact elements.
Namely, we say that an element v € G is compact if it is contained in some
compact subgroup K C G. Write G. C G for the (open and closed) sub-
set of compact elements. Let H. C H be the vector space of (compactly
supported locally constant) functions supported on G.. The group G acts
on H. by conjugation, and we write HHj for the space of coinvariants

(He)a-

Theorem 1 (Dat). There is an isomorphism ¢ : K°(G) ® C — HH§. In
terms of this isomorphism, the pairing (A, [V]) = (xa,t([V])), where xa
is the Harish-Chandra character of A (here xa is viewed as a distribu-
tion on G, which acts on H. and by conjugation-invariance descends to
conjugation coinvariants (He)a).



One way to get projectives in Sm(G) is by (compact) induction from
compact subgroups. Suppose J C G is a compact open subgroup of G.
Given a smooth representation V of J, write Ind§ (V) := V ®3, He for
the induced representation. Note that our functor Ind§ is left adjoint to
the forgetful functor, and is sometimes denoted Ind. |§ (V) to distinguish
it from the right adjoint, which is a non-isomorphic functor (since [J : G]
is infinite).

A representation V' of a compact group J is finitely-generated and
projective if and only if it is finite-dimensional (recall that smooth finite-
dimensional representations of a compact group form a semisimple cate-
gory). As both of these properties are obviously invariant with respect to
induction, this gives us a collection of projectives Ind§ (V) € Smy,(G) for
pairs (J, V) with J C G compact and V finite-dimensional representations
of J.

Definition 1. We say that a representation is finitely induced if it is
of the form Ind§ (V) for some finite-dimensional representation V of an
open compact J C G.

Note that it is sufficient to consider maximal compact subgroups J,
as if J is compact open and M C J is a maximal compact subgroup
containing J, then Ind$ (V) 2 Ind§;(Ind¥ V), and Ind¥ V is a finite-
dimensional representation of M. Given a pair (J, V) as above, the class
of the corresponding finitely induced representation in Dat’s K° group is
the normalized character d - xv, where yv is the function (supported in
J) such that Tr(h,V) = (h,xv) for h € H supported in J and s is the
uniform distribution on J of norm 1. Note that d; - xv is supported on
J C G, hence projects to the space of G-coinvariants H HS. Because the
characters xv form a basis for the vector space of central functions, one
sees that these projections of characters span all of HH§ over the com-
plex numbers: in particular, the finitely induced representations rationally
span the group K°(G).

In this paper we will consider the integral K group KO(G). Our main
result will be the following.

Theorem 2. The classes [Ind§ V] of finitely induced representations in-
tegrally span the group K°(G).

An equivalent formulation of this result is as follows.

Theorem’. For any projective object P of Smyq(G), there are finitely
induced representations Ind§ V,Ind$, V' such that P@®IndS, V' = Ind§ V.

Or, equivalently (as Smy¢q(G) has enough projectives),

Theorem”. Any object of Smy4(G) has a (two-sided) resolution by direct
sums of finitely induced representations.

The statement in this last form is a conjecture in Roman Bezrukavnikov’s
thesis, [BThes].

The functor Ind§ : Smyq(J) — Smy,(G) takes direct sums to direct
sums, hence induces a linear map on K° groups [Ind§] : K°Smq(J) —
K°Smy,(G). The maps [Ind$] and [Indﬁh,l] are intertwined by the iso-
morphism V + 4V : K°(J) — K°(yJy™') — hence, in particular, they
have the same image in K°(G). Further, [Ind$] factors through Sm s4(M)



for M some maximal compact subgroup containing J. If we choose an Iwa-
hori subgroup I C G, the collection Max; of maximal compact subgroups
containing [ is a set of representatives of maximal compact subgroups up
to conjugation. With this in mind, we write down the following map.

Mdmax] == P [Mmdf]: @ K°(M)— K°(G).

MeMaxy MeMaxy

Theorem 2 then implies that the map [Indmax] is surjective. There are
some classes obviously in the kernel of this map: namely, given a sub-
group J C M; N Mj, the two inductions [Ind}" (V)] and [Indyj (V)] have
the same image under [Indmax| (viewed as elements of the corresponding
direct summands). Note that it is enough to take J = M; N M; above.
Write K2, for the quotient of EBMEM&XI K°(M) by relations of the form
[nd}fi V]~ [Ind g V]

The map [Indmax] induces a map [Indcen] : ngn — KO(G). It can be
shown from the formula of [D] and basic properties of parahoric subgroups
that this map is an isomorphism rationally. Theorem 2 implies that it is

a surjection integrally. Hence the map [Indeen] : K2y — K°(G) is an
isomorphism on torsion-free quotients.

0.2 Compactified category

Our proof will proceed by constructing a resolution for an arbitrary object,
in a way that is functorial up to a certain choice of a “normalization” of
V. This choice of normalization is provided by the compactified category
Sm defined in [BK2] and its subcategory Sm, of locally finitely-generated
objects. This category is a powerful tool which in particular allows one
to systematically normalize computations with finitely-generated repre-
sentations of G. Namely, given two objects V, W of Sm¢4(G), the space
Hom(V, W) is in general not finite-dimensional, but has action by the
Bernstein center Z := HH°(H), and is a finitely-generated representation
of Z. Equivalently, this Hom space can be considered a sheaf Hom(V, W)
over Spec, which is coherent and supported over finitely many irreducible
components. Similarly the derived Hom space can be written as a finite
complex of coherent sheaves RHomg (V,W) over Spec(Z). Now com-
ponents of Spec(Z) are canonically scheme-theoretic quotients of tori (of
dimension between 0 and n) by subgroups of the Weyl group W. Choos-
ing W-equivariant toric compactifications of these tori (something that
can be done in a consistent way), we get a canonical compactification
Spec(Z) gy of the central spectrum. The idea of [BK2] is to endow the
objects V,W of Sm(G) with some additional data, giving objects V, W
in some upgraded category Smy,, in order to be able to write an in-
ner Hom space Hom(V, W) as a coherent sheaf over Spec(Z) . One

can then reconstruct Hom(V, W) as T (SpeC(Z)BK,Hom(V7 W)), and
Ext*(V,W) in D’Sm;, as the hypercohomology of the double complex

RT (Spec(Z ) g, RHom(V, W)) The wonderful advantage of this cat-

egory and its derived category is that these categories are proper (see
e.g. [O]), and two objects (under suitable finite generation conditions)



have finitely many finite-dimensional Ext spaces. This allows us to define
Yoneda functors from DbSTnfg to D® Vect fa given by taking R Hom with
any (finitely-generated) object. We will show that any representation V'
has a resolution by induced representations by choosing a compactifica-
tion V € Smy, (something that is relatively easy to construct), and write
down a resolution
(Jerd) —> 2
of the forgetful functor
7:Sm — Sm(G)

by a finite collection of functors given by direct sum of functors of the form
37+ V = RHom(X;,V) ® Ind$ V; indexed by J running over corank-i
parahoric subgroups of G containing some fixed Iwahori subgroup.

0.3 Localization on the building

The resolution (7:,d) (as well as a version of this functor depending on
depth) will be the focus of this paper, and is interesting independently
of its application to K theory. Our construction will be topological in
nature, and is motivated by a philosophy of p-adic localization introduced
in the paper [BThes]. Namely, recall that (for G split and semisimple) the
Bruhat-Tits building B¢ is a G-equivariant contractible cell complex with
vertices parametrized by maximal compact subgroups and k-dimensional
cells parametrized by the collection of all parahoric subgroups of corank
k. The space Bg can be thought of as a p-adic analogue to the equivariant
space G/ K, either for G a real group and K a compact subgroup, or for G
a complex group and K the Borel. The combinatorially constructed topol-
ogy on B then takes the place of the smooth or complex structure on the
equivariant spaces. In particular, the appropriate analogue to the category
of local systems on an equivariant space is the category of constructible
sheaves on the building with finite-dimensional fibers, constructible with
respect to the cellular stratification. This category can be thought of as
having action by something like the Lie algebra of G. To have action by all
of G, we consider the category S h?d of G-equivariant constructible sheaves
on the building with finite-dimensional stalks. One then is interested in
the (compactly supported) global sections functor T'. : Sh?d — Smy,y(G)
which is analogous to the inverse Beilinson-Bernstein localization func-
tor arising in the theory of category-Q representations of semisimple Lie
groups. Unlike the (inverse) localization functor in geometry, the functor
T'c is far from being an equivalence, and is not a faithful functor; nev-
ertheless, Bezrukavnikov shows in [BThes| that it becomes faithful after
factoring out a certain Serre subcategory of Sh?d of objects with triv-
ial homology. In fact, the essential image of Bezrukavnikov’s functor is
precisely the full subcategory of representations in Smy4(G) consisting
of representations which admit a resolution by direct sums of finitely in-
duced representations. To motivate this, observe the functor I'. comes
endowed with a resolution (coming from the cellular structure) by func-
tors T : Sh?d — Smyy(G) with J running over the paraholics and
I'Y =~ Ind§ Stalk, canonically expressed as the induced representation
from the stalk functor at a cell o stabilized by J.



Thus in order to show that any finitely-generated representation has
a resolution by finitely induced ones, it would be sufficient to construct
a right inverse Locsm of the functor I' : Sh?d — Smyy(G): then the
cell complex computing I'(Locsm (V) 2 V would give such a resolution.
Unfortunately, it is relatively easy to see that such a right inverse does
not exist, even in a derived context. Instead, what we do construct is
a derived, compactified version of the localization functor: a complex of
sheaves Locg(V'), which we will call

Locgr : DbSTnfg — Sh?d,

with the property that the following diagram of functors commutes:

— Loc,
D'Smy, ——% Dt ShC
] .
<
D Smyy(G).

This commutative diagram, along with the existence for any object V' €
Sm of a (non-unique) compactified object V' with 3V = V| furnishes us
with a resolution of every object by finitely induced representations.

Remark 1. Note here that the category DjbcdShG is the category of (equiv-
ariant, cellular constructible) complezes sheaves on B whose homology
sheaves have finite-dimensional stalks. By a standard argument, this cat-
egory is derived equivalent to the category DbSh?d, and in order to get
our desired resolution by compactly induced finitely-generated objects, one
needs to choose an object-wise inverse lifting the equivalence on homo-
topy categories of D?dShG — DbSh?d, in a way that does not have to be
functorial. Note that in an As context, functorial such lifts do exist.

0.3.1 Truncation

The more canonical functor, and the one we will spend the most time
studying, is a functor Loc : Db%fg — D’ CoSh€ into the category of
cosheaves, not necessarily with finite-dimensional stalks. In order to get
a functor Loc" into sheaves we can use a standard Verdier-type equiva-
lence between derived categories of sheaves and cosheaves (see [Cu]). In
order to further project to the category of sheaves with finite-dimensional
stalks, we use a procedure of “truncation” and take stalkwise invariants
with respect to a coefficient system of congruence subgroups of conduc-
tor depending on the depth of V. It is in fact somewhat surprising that
“truncation” does not destroy commutativity of the global sections dia-
gram above, and our proof of this (in section 8) uses extensively ideas of
Meyer and Solleveld, [MS].

0.4 Toric mirror symmetry and corridors

The idea behind our construction of the localization functor comes from
adapting to the context of buildings and noncommutative geometry a



certain functor arising from mirror symmetry of toric varieties: namely,
the coherent-constructible correspondence of [FLTZ] (especially in the
interpretation of [T] and [CCC]). The basic idea underlying both the
point of view of [CCC] and our construction of the localization functor
is one of descent: we express (countable) colimit-compatible dg func-
tors D’Sm — DPC (for arbitrary categories C) as collections of func-
tors from noncommutative affine charts, with certain algebra actions and
compatibilities between them. This converts the task of constructing
the functor Loc : D°Sm — DPShC to that of finding several compati-
ble objects of Sh® with appropriate algebra actions. These objects are
constructed using (Verdier duals to) constant sheaves on a new class
of contractible geometric subsets of the building which we call corri-
dors (analogous to shifts of dual toric cones in the case of toric vari-
eties). Note that both the Beilinson-Bernstein localization functor and the

Figure 1: Example of a corridor for SLy(Q2)

coherent-constructible correspondence functor are in general fully faith-
ful: not so for the localization functor here. Instead, we have a functor
Col : D’ CoSh® — D®Sm right adjoint to the localization functor with
the property that ColoLoc : Sm — Sm is close to but not quite the iden-
tity functor (as would be the case if Loc were fully faithful). The question
of “fixing” Loc to be fully faithful (and thus give an embedding of the
compactified category Loc into the category of equivariant sheaves on B)
is an interesting one, and one that the author is agnostic about at the
moment.

0.5 The Yoneda philosophy and the Morita phi-
losophy

Before continuing, we point out a subtle point about the point of view we
adopt in defining functors, which is in a sense dual to the standard one. We
will indicate this difference somewhat vaguely in this section, in order to
motivate some of the definitional choices we make later in paper. Namely,
given two module categories (either Abelian or differential graded), A-Mod
and B-Mod there are a few common ways to “represent” dg functors
between them. One, which we can call the “Yoneda” philosophy, is to
define a functor FY : A-Mod — B-Mod by choosing some bimodule Y €
A-B-bimod, and defining F¥ (X) := Hom(Y, X). Another, which we call
the “Morita” philosophy, is to choose a B-A-bimodule, M, and define



Fr(X) := M ®4 X. When one has not chosen a generator and starts
with two categories C, D determined by some sort of algebraic data, it is
still often possible to interpret the notion of a C-D-bimodule as an object of
another algebraic category, informally “D°P-type object in C” (formally,
this bimodule category is determined by some universal property, and
denoted C W D°P when it exists). In defining the functors in this paper,
we will identify the relevant bimodule categories, and almost exclusively
use the “Morita” language of tensor product with a “kernel” bimodule M
rather than the Yoneda constuction of Hom(Y, —). Note that our choice
is aesthetic: as our categories are smooth, every “Morita-type” object M
can (in the dg world) be replaced by a suitably dual “Yoneda-type” object
Y := MY. However, the relevant duality functors are complicated, and
using the Yoneda method of defining functors would make our exposition
more cumbersome than it should be.

1 Plan of paper

We begin by gathering together in section 2 some results about the cate-
gory of representations Smég that at this point can be considered classical.
In section 5 we study homological algebra on the compactified category
Sm. We begin by recalling basic properties of the compactified cate-
gory from [BK2], the most important ones being its geometric enrich-
ment over the smooth compact variety X//W for X an n-dimensional
toric variety over C compactifying the spectrum of the spherical center,
Spec(Zspr) = T//W. We move between three different points of view of
Sm introduced in [BK2]. One point of view is to consider Sm as a collection
of compatible representations of the topological algebras Hpg, which can
be thought of as noncommutative affine charts. A second is a microlocal
modification of the first, where we only consider punctured completions
7-77:9 of the Hp with respect to certain closed strata. The final one is a
picture of Sm as sheaves of modules over a sheaf of algebras A over X//W
(which we get after choosing an appropriate generator). The most impor-
tant results of this section are lemmas 8, giving a formula for higher Hom
between compactified representations and 9, which characterizes colimit-
compatible (dg) functors D’Sm — C in terms of the data of compatible
collections of objects Xpgo with action by the topological algebras Hpgo.
We call such data {Xpo} “kernels” for functors. In the next section,
6, we recall some combinatorial models for the category of equivariant
cosheaves on the building and its derived category in Section 6, with the
main sources being [BThes] and [Cu]. We also introduce a class of sheaves
we call constant sheaves on orbifolds, which are orbifold pushforwards of
constant sheaves on “étale subsets” of the orbifold B/G. The remainder of
the paper defines and studies various functors D’Sm — D? CoSh® using
appropriate kernels {Xpo}. In section 7, we define the “absolute local-
ization” functor Loc : D®Sm — D® CoSh® which we glue as a homotopy
limit of the functors Locpg indexed by pairs of parabolics. The functors
Locpgo are deduced from constant orbifold cosheaves on quotients of cer-
tain special contractible subsets of B which we call corridors. We check
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that Loc satisfies commutativity of the diagram

L
D'Sm —2% D’ CoSh®

J éﬂ

Db Smg,

and show that the stalks of this functor are profinite-dimensional, i.e.
the stalk over z becomes finite-dimensional upon taking invariants with
respect to any open subgroup of the stabilizer G(z).

Now replacing the functors Locpg by invariants with respect to the
“Schneider-Stuhler coefficient system” GY) = G(z,e) <« G(z) over every
point z gives a new functor Loc® : Sm — Sh with finite-dimensional
fibers. We need to show that this functor has the same compatibility

<oy L (e)
D'Sm = 2%, Db CoShC

7 e

Db Smg,

when restricted to compactified representations of depth < e. It turns
out that we in fact have a stronger statement: taking invariants does not
change the (compactly supported) sections of any component Locpo (V)
(provided V has depth < e). In order to prove this, we use the remarkably
versatile machinery of “compatible systems of idempotents” of Meyer and
Solleveld, [MS]. This is done in section 8. This finally gives us a resolution
of the underlying representation V of any object V of the compactified
category. It remains to observe that any object V' of Sm admits compact-
ification to an object V of Sm to conclude our proof.

2 Reminders about the representation cat-
egory and the Bruhat-Tits building

Here we will gather together several known results about the category
Smng of smooth finitely-generated representations. Choosing an integral
model for G (easy since G is split), we have a subgroup G(O) C G(K),
which is a maximal compact subgroup. A subgroup conjugate to the
preimage of a Borel subgroup of G(k) under the residue map G(O) —
G (k) is called an Iwahori subgroup. A compact open subgroup containing
an Iwahori subgroup is called a parahoric. Parahoric subgroups have a
geometric incarnation as stabilizers of cells of a contractible G-equivariant
cell complex, Bg, called the Bruhat-Tits building. As parahorics are self-
normalizing, we have a bijection between cells and parahorics o <+ G(0o)
taking a cell of B to its stabilizer, or equivalently the stabilizer of any point
x € 0. Now to every point x € B and number r € R>o, Moy and Prasad

11



[MP] associate a subgroup G(z,r) C G, normal in the stabilizer G(z). We
say that (for some integer ¢), a representation V' € Smg has depth < e if
it is generated by the subspaces V(@€ It follows from work of Bernstein
that the category of all finitely-generated representations of depth < e is
Noetherian and a direct summand in the category Smy,(G). When e is
an integer, the groups G(z,e) can be taken to be the Schneider-Stuhler
coefficient system G of [SS], which is constant on cells of B.

Given a parabolic subgroup P C @, it has a normal unitary radical
Up C P C G, and the quotient P/Up is a Levi subgroup, which we will
denote Lp. We have a pair of exact adjoint functors

Tp SmG = SmLP :’ip,

called the Levi restriction and induction, such that rp(V) := Vy with
evident Lp-action. We say that a representation V' is cuspidal if ip(V) = 0
for any parabolic P C G, and admissible if it has finite depth. Jacquet
induction and restriction preserve both the properties of admissibility and
of having depth < e.

We define the Bernstein center Z := HH°(Smg) to be the center of
the category Sme . Given any representation V € Smg, it has a central
support subvariety Supp(V') C Spec(Z). The category of representations
with central support at a given point x € Spec(Z) is not necessarily
semisimple, but is always Artinian, with at most |W| irreducibles (for
|W| the size of the Weyl group). The depth of a representation depends
only on its singular support, and the variety Spec(Z) is decomposed into a
disjoint union by depth. The component Spec(Z<.) of bounded depth is a
variety of finite type, and it has smooth connected components isomorphic
to quotients of tori (of dimension between 0 and n) by subgroups of the
Weyl group.

Up to some choices, we can choose a “spherical” central subring Zs,, C
Z such that the Spec(Zspn) = Tc//W is the scheme-theoretic quotient
of the Langlands dual torus to the maximal torus 7' C G, taken with
coefficients in C and quotiented by the Weyl group. The resulting map
Spec(Z) — Tt/ /W can be shown to be finite on every central component.

3 Reminders about dg categories

Unless stated otherwise, every instance of the derived category D®A of an
Abelian category A will be viewed as a pretriangulated dg category (on
the category of complexes of objects of A with bounded cohomology), and
not as a triangulated category. Because a formal discussion of dg category
formalism would extend this paper unnecessarily, we refer the reader to
[?, ?] for a careful introduction. Here we summarize some key properties
of the dg language (with some terms borrowed from the closely related
oo-categorical context in a way that by now is standard) that we will be
using. A dg category is a category C fibered in complexes. For two objects
V,W € C we write the complex

Hom, (V,W) :=--- — Hom_1(V, W) — Homo(V, W) — Hom(V, W) — ....

12



When we say “a map f:V — W in C” we will mean (unless otherwise
specified) a cocycle

f € Zy(V,W) := ker[Homg — Homy].

Two maps f,g : V — W are homotopic if they differ by a cobound-
ary. The homotopy category of C is the category with the same objects
as C with maps Hompee(V, W) := H°Hom.(V,W); in particular, if a
map f € Zo(V,W) has a homotopy inverse, the objects V, W are isomor-
phic in the homotopy category. The homotopy category is canonically
the 0-graded piece of a graded category H*(C) with Hom g~ (c)(V, W) :=
H* Hom(V, W).

A functor F' : C — D of dg categories is dg if on Homs it induces
maps of complexes (i.e. is linear and commutes with differentials). A
dg functor F' : C — D induces a functor on homotopy categories, hoF' :
hoC — hoD, as well as a homology functor H*F : H*C — H*D. We say
that F' is a dg equivalence if H*F is an equivalence. Morally, functors
which are dg equivalences commute up to homotopy with all suitably
derived constructions.

Given an associative algebra A, define the derived category of A, which
we denote, D™ (A) to be the category of upper-bounded complexes of pro-
jective left A-modules, and define DT (A) to be the category of lower-
bounded injective left A-modules. Note that a map V — W in D™ (A),
resp., DV (A) is a homotopy equivalence if and only if it is a quasiiso-
morphism (i.e. an isomorphism on the level of the graded A-modules
H*(V)— H*(W).

Write Db(A) for the category of upper-bounded complexes of projec-
tive A-modules with bounded cohomology, and write Dfnj (A) for the cat-
egory of lower-bounded injective A-modules with bounded cohomology.
One of the basic results of derived category theory is the following fact:

(a1

Fact. There is a canonical equivalence of graded categories H* D®(A)
H*Dfnj (A), which is realized by a chain of dg equivalences.

3.1 Homotopy limits and colimits

The categories we consider will be pretriangulated, and in fact will have
a functorial notion of cone. We write down here the consequences of this
property that we will use.

Suppose C is a pretriangulated dg category, I is a finite partially or-
dered set and D : I — C is a (strict) functor (a “diagram in C indexed
by 7). Then there is a canonical object hocolim(D) € C pronounced
“homotopy colimit”. When C is the derived category of some category
A (possibly subject to some conditions on the level of homology groups),
this object is a representative of the left derived extension of the ordinary
colimit functor colim : Fun(l, A) — A, and in particular on the level
of homotopy categories, it is left adjoint to the identity diagram functor
C — Fun(I,C). The homotopy limit holim(D) is defined similarly. If
the diagram category I is not finite but has finite depth and C admits
arbitrary direct sums (indexed by sets of cardinality bounded by some
ordinal, which also bounds the size of I: by assuming choice of a universe,

13



we can safely ignore set-theoretic issues of this sort) then we can also
define lim(D) and colim(D) for diagrams indexed by I.

Suppose that either C admits arbitrary direct sums or if I is finite, or
the diagram poset I indexes cell containments of a polyhedral complex
P of bounded dimension < n. Then a diagram D : I — C is equiv-
alent to a polyhedrally constructible sheaf Vp of objects of C over P.
The homotopy limit of D is then functorially homotopy equivalent to the
complex of cellular cochains C* (P, Vp). Similarly, if I°? is equivalent to
a polyhedrally constructible P then D induces a cosheaf V7 on P and
hocolim(D) is functorially homotopy equivalent to the complex of cellular
chains, C.(P, Vp).

3.2 Affine covers and Cech descent

Now suppose X is a scheme of finite type (always assumed separated) and
U = {U;} is an affine open cover of X. We will always assume that open
covers are closed under intersections (which preserves the property of be-
ing affine for separated schemes of finite type), and the indexing set ¢ € [ is
a partially ordered set with ¢ X j iff U; C Uj. In this case, for a complex of
coherent sheaves F over X, write I'y/(F) := hocolim;eror I'(U;, F), where
the functors I'(U;, F) are the functors induced on the derived category
from the exact functors of affine sections.

Fix an affine cover U of the scheme X. We say that a sheaf F is
U-projective if F| | U; is projective for any i € I.

Fact.

3.3 Symmetric monoidal dg category and fibered
categories

For k a commutative ring, the category of complexes D(k) is canonically
a symmetric monoidal category. For complexes V(= V.), W(= W) (as-
sumed projective if k is not a field), we have

VeoW).= P View,
i+j=n

with differential given by
dv@w)=dv@w+ (-1)"v @ dw.

The structural isomorphisms giving the symmetric monoidal structure as
as follows. The unit object is k. The associative isomorphism (U ® V) ®
W 2 U® (V®W) is induced by the one on (graded) vector spaces, while
the symmetry isomorphism o : V@ W 2 W ® V is given by

c(v@w) = (="Ml @ .

For a triple of complexes of k-modules have the standard adjunction iso-
morphism, an isomorphism of complexes of k-complexes,

Homy, (U ®¢ V, W) = Homy (U, Homy (V, W)).

14



If C,D are dg categories over k and £ is another category, we say that a
functor F' : C x D — & is bi-dg if the induced maps on Hom spaces are
bilinear and factor through maps of complexes

Hom¢ (X,Y) ® Hom? (X', Y') = Hom® (F(X, X'), F(Y,Y")).

We say a dg category C/k is symmetric monoidal if it is endowed with
a symmetric monoidal structure (as an ordinary category) such that the
functor ® : C x C — C is bi-dg and all structure morphisms implicit in
symmetric monoidal structure are 0-cocycles.

Given C a symmetric monoidal dg category over k, we say D is a
symmetric monoidal dg category over C if D consists of a collection of
objects with an assignment X,Y — Hom(X,Y')(= Homy, -(X,Y)), and
object of C together with composition morphisms

Hom(Y, Z) ® Hom(X,Y) — Hom(X, Z)

which is a 0-cocycle, together with for any X € D a unit morphism Id —
Hom(X, X), which together admit the evident associativity and unitality
natural transformations, which we assume to be 0-cocycles. For any object
F € C, write I'(F) := Home (Id¢, F). If the symmetric monoidal structure
on C is closed, i.e., if C admits a inner Hom functor, i.e. a bi-dg functor
C x C? — C written

(X,Y) - Hom(X,Y)eC

endowed with an adjunction isomorphism « : Hom(X,Hom(Y, Z)) =
Hom (X ®Y, Z), then any category D fibered over C gives rise to a structure
of dg category over k on the objects of D by the assignment Hom(X,Y) :=
I (Hom(X, Y)).

4 Lax and strict glueing of categories (maybe
put in appendix)

Suppose I is a poset (as in Section 3.1), and suppose D : I — C is a
diagram of categories and functors. For ¢ < j a morphism in I, write
F;; for the corresponding functor C; — C;. Recall that we interpret the
diagram in a two-categorical context: i.e. for ¢ < j < k a morphism in
I, we are given functors Fj; : C; — Cj, Fiy, : C; = C, and Fji : C; —
C; together with a natural equivalence ¢ijr @ Fji o Fij — Fig, satisfy-
ing the compatibility condition that any way of composing the natural
transformations of type ¢;jx produces the same natural transformation
Fin—li’n @) Fin—zin—l O--:0 Filig — Filin for a sequence i1 < i <...=X in.

In this context we define the oplax limit (a.k.a. the Grothendieck
construction) 1im°"'**(D) to be the category with objects tuples {X; €
Ci}ier together with compatibile morphisms z;; : F(X;) — X; for each
i = j, satisfying the evident compatiblity, when ¢ < j < k, with the
$ijr above. A morphism from {X;, xi;} — {X;,xi;} is a collection of
maps X; — X/ compatible with all structure. If all C; are dg categories
and Fj; are dg functors, with ¢;;x maps of complexes, we say D is a dg
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diagram, and the oplax limit inherits the structure of a dg category. If all
C; are pretriangulated, then so is the oplax limit. Diagrams I — dg-Cat
of a fixed poset in derived categories themselves form a two-category. A
morphism D — D’ is a collection of functors T} : C; — Ci together with
weak equivalences
Tij - Fi/j oT; & Tj OFZ‘J‘7

satisfying the evident compatibilities. A morphism T := {T}};, : D — D’
induces a functor TP'*® : lim®P!** C; — 1im°P'*® €. If all T} are dg equiva-
lences and the C; are pretriangulated, then TP'*® is also a dg equivalence.

5 Geometry in the compactified category

In order to construct and study our functor Loc, we need a good under-
standing of the derived category of the Bezrukavnikov-Kazhdan category
Sm, and more generally, a characterization of dg functors D*Sm — C for
all “sufficiently nice” dg categories C, in terms of algebraic data on ob-
jects of C. The description we will give will have algebro-geometric flavor.
The techniques in this section come directly from ideas of toric mirror
symmetry, and in particular from constructions in [CCC] (although the
exposition will be self-contained).

5.1 Polarization of GG

Here we will introduce some notation and collect some standard results
having to do with the combinatorics of roots and polarization of coweight
lattices. In particular, to every conjugacy class of parabolic P C G we
associate a sublattice Ap of the coweight lattice of G, and a positive cone
A; C Ap.

Notation. When making a point to distinguish between a geometric group
or space and its set of points, we will use math boldface G,X for the
geomelric object and ordinary symbols G := G(K), X := X(K) to denote
sets of points. When there is no ambiguity, we reserve the right to abuse
notation and use G to denote the geometric group G, etc.

Recall that a polarized semisimple algebraic group G is a pair B C G
with B a fixed Borel subgroup. Recall that a parabolic subgroup of G
is an algebraic group P containing a Borel subgroup. Having chosen a
polarization, every parabolic subgroup is conjugate to a unique standard
parabolic subgroup P D B.

Notation. We will use calligraphic B, P to denote standard Borels or
parabolics, and roman B, P to denote their conjugates.

As any parabolic is its own normalizer, the set of all parabolics conju-
gate to P can be canonically identified with points of the space G /P.

Notation. Abusing notation, we will identify the set of (K-rational)
parabolics conjugate to P with the set G/P, and write P € G/P to denote
a choice of such a parabolic.

Definition 2. For P a standard parabolic, write Ap for the unramified
quotient of Lp by the minimal open normal subgroup, Ap := Lp/L%.
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For B the Borel, the lattice Ag is identified with X.(T), i.e. the dual
lattice to the weight lattice. The lattice Ap is the sublattice in Ay of
vectors satisfying (X, z;) = 0 for any principal roots x; € Xprinc \ X;’rmc C
X*(T) not in the Lie algebra of PP. The choice of polarization endows
the lattice A7 with a distinguished positive cone, A? C A7 consisting
of {\| (\,x;) > 0V z; € Xprinc}. Write AL = A; N Ap. There is some
ambiguity (depending on convention) on the relationship of polarization
on the root lattice (i.e. choice of positive cone) to the polarization data
B C G. We choose the convention that guarantees that for any rank-
one parabolic P; D B, the action of Lg on the p-adic affine line Ug/Up,
(viewed as a totally disconnected space with a Haar measure) is expanding.

5.2 Definition of Sm

Here we will recall the definition and some properties of the compactified
category Sm from [BK2]. First, a bit more notation. To a pair of embed-
ded standard parabolics P C Q we will associate an intermediate cone
A7t C A%+ C Ap as follows.

Definition 3. Write A3T := {\ € Ap | (\z;) > 0V ux; € XPQ”.M}.
Evidently, Ag* = A;;.
Definition 4. For P C Q parabolics in G, define L;, resp. L%+ to be
the preimage in Lp of the semigroups A;g, resp. A7Q,+, in the unramified
quotient Lp/L%.

The category Sm will be “glued” out of smooth representation cate-
gories of the semigroups L%"' above.

Definition 5. Define Hpg to be algebra of locally constant, compactly
supported functions on the topological semigroup L%+.

Definition 6. Define Smpo to be the category of smooth representations
of the algebra Hpo.

One should think of the Smpg as a system of “étale” (or more specif-
ically, flat) opens of Sm, and the open corresponding to the pair (P, Q)
can be considered to “contain” (P, Q") if P cPCc QcC Q.

Definition 7. Write N for the poset of pairs (P, Q) of standard parabolics
in G satisfying P C Q, with order (P, Q") X (P, Q) when P’ CP C Q C
Q.

Now for any pair (P’, Q") < (P, Q) we have a functor j;?IQQ, : Smpg —
Smp/gr defined as a composition of the following two functors.

Definition 8. For any triple P’ C P C Q, we define the functor jg'gg :
Smpg — Smpig taking Vpg to the coinvariants (Vpo)u,,, where we
view Vpq as a representation of PST, the subsemigroup of P which is the
preimage of L%+, restrict it to the preimage (P2 of P’ in Lgﬁr, then
quotient out by Up to obtain a representation of L%,‘*‘

Definition 9. For any triple P C Q C Q', we define the functor j;;g :
Smpo — Smpgs taking a representation Vpo of Hpo to its extension of
scalars Vpo Qupo Hpor-
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Definition 10. Now for a quadruple P’ C P C Q C Q' of parabolics, we
write , ,
iPo = Jhal 0pg :Smpo — Smpigs .

Note that this functor is canonically equivalent to the composition in
the opposite order, ]77;,/ 3 o jg IQQ. More generally, any chain of compositions
of functors of this sort with the same range and domain will be canonically
equivalent. This is encoded in the following lemma.

Lemma 3 (Bezrukavnikov, Kazhdan). The categories Smpo and the
functors jPIQ/ extend to a strict representation of the poset N in cate-

’
gories. l.e. there are canonical isomorphisms of functors ];;,QQ, ];?QQ =

" "
j;,;QQ :Smpg — Smpr g, and these isomorphisms are compatible in an
evident sense.

We define Sm to be the limit of this diagram of functors parametrized
by NV in the category of categories. Namely,

Definition 11 (Bezrukavnikov, Kazhdan). An object V of Sm is a collec-
tion of objects Vpg of Smpg along with compatible isomorphisms j;;/QQ/VPQ =
Vprgr. A morphism f : V — V' is a collection of morphisms fpq : Vpg —
Vpo such that j;,D,QQ' fro = fror.

5.3 Root toric variety and the geometric center
of Sm

Let Tt be the algebraic torus over C with character lattice A (which is dual
to the character lattice of the maximal torus T' C G). The collection of
dual hyperplanes in Ar to the roots in A form a toric fan. Write X = XC
for the corresponding toric variety over C, with open orbit Te ¢ Xc.
Then X is smooth W-equivariant (with action induced from W-action on
the fan). The W-action preserves the toric stratification, and induced a
stratification on the scheme-theoretic quotient X //W . This stratification
on X /W then has components parametrized by faces of the Weyl chamber
(as it is a fundamental domain for the W-action on the fan), which are
indexed by standard parabolics P C G. For P a parabolic, let Wp be
the intersection W N P for W C G an embedding of the Weyl group that
normalizes some T' C B. Then Wp acts on the lattice Ap, as well as on
the semigroup A+ Write X'p for the spectrum Spec(A ), which is an
affine toric subvarlety Xp C X with closed toric stratum isomorphic to
the torus Tp := Spec(Ap). The X73 are then an affine cover of X and
the T are an affine stratification of X.

Definition 12. Write Xpo for the quotient Xo//Wp and Spo for the
closed stratum To//Wp in Xpo.

Then the Xpg give a finite flat cover of X. (This cover has the flat
analogue of the Nisnevich property, which we will see in the next section).
Now it follows from work of Bernstein that the identity functor in the cate-
gory Sm(G) has action by the ring of functions C[A]" = Q(T'//W) on the
scheme-theoretic quotient by this action. Equivalently, the Hom functor in
Sm(@) is enriched to a functor Hom : Smg x Smg — Qcoh(*TE //Wp)
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with composition o : Hom(V, W) ® Hom(U,V) — Hom(U, W) fibered
over the base “Tif / /Wp, and with canonical isomorphism Hom(V, W) =
I' (*TZ //Wp,Hom(V,W)) . An extension of Bernstein’s arguments im-
plies that the category of smooth representations of the semigroup Hpo
is enriched over the commutative ring Q(Xpg). In the same sense, the
paper [BK2] shows that Sm is fibered over the smooth projective scheme
X. Namely,

Lemma 4 ([BK2]). 1. The category Sm is enriched over Xc//W, i.e.
there is a functor Hom : Sm ® Sm — Qcoh(Xc//W) with a com-
position natural transformation o : Hom(V,W) ® Hom(U,V) —
Hom(U, W) fibered over the base.

2. Ordinary Hom ﬂsim is the composition of Hom with global sections,
i.e. Homg(V, W) 2 T'(X¢//W,Hom(V, W)).

3. Given anoﬁbjectv of Sm and F of Qcoh(Xc//W), there is an object
V ® F € Sm with a natural adjunction equivalence

HOJQ(V(@ ]:»W) = choyl(xc//w)(f7 M(V7 W))

4. In an étale neighborhood of the boundary stratum Sp, the pullback of
the inner Hom Hom(V, W) to any Xpo agrees with mxpg (Vpo,Wpo)
(and in particular, the fiber of Hom(V, W) over the open stratum
T//W is Hom(V,W)).

5.3.1 Local projectivity and extension

In order to rightfully call Smy, a “compactified” category, it would be
nice to know that any object V' € Smy4(G) can be extended to an object
V € Smy,, at least in a dg sense. This is in fact true on the level of
abelian categories, but in order to simplify our life a little, we prove it in
a simpler setting of locally projective objects, which we show to dg span
all of D"Sm.

Definition 13. We say that an object V € Sm is locally projective if
every Vpqg is projective as an object of Smpgq.

Lemma 5. Every object in Sm has a finite locally projective resolution.

Proof. Every Smpg has projective resolution of length < n. Now given
any object V such that each Vpg has projective resolution of length k > 0
and a map F' — V from a locally projective object F which is surjective
on every PQ-component, the kernel ker(P — V) locally has projective
resolutions of length < k& — 1. Thus by induction, it is enough to show
that any object V € Sm admits a surjective map from a locally projective

P. This is shown in [BK2]. O

Now we prove the following lemma.

Lemma 6. For any locally projective V' € Smyy(G), there is a (not nec-
essarily canonical) object V' with the underlying representation Vag = V.
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Proof. We proceed by induction. Suppose we have constructed a col-
lection of compatible (in the sense of Definition 11) objects Vpgo for all
Po € P C Q, with Vgg = V. Then we can automatically extend it
to a compatible collection of objects Vpig for all @ 2 Py, by taking
Vprg := (Vpyo)u,, - Now it suffices to extend this collection of compat-
ible representations by an object of type Vp,p, whose localizations pro-
duce compatible Vp,o for Q D Py. Now note that as (by assumption)
the Vp, o are finitely-generated and projective, hence torsion-free, we can
choose collections of generators z/°° € Vp,o. Now we define Vp,p, to
be subspace of the L;O-span of 702 ¢ Vp,c which are contained in all
Vpoo C Vpy,a. By Noetherianness of the finitely-generated representation
categories, this module is finitely-generated. (In fact, the module is inde-
pendent of choice of generators when the codimension of Py > 2 by the
S2 property). O

Corollary 7. These two lemmas imply that the K -theory map K° (%fg) —
K°(Smy, (@) is surjective. O

5.3.2 Internal and external tensor product

Define the category Sm” for the category of collections of right repre-
sentations Vpg of Hpgo with opposite compatibility conditions. Then
given a pair of objects V € %,V/ € %R, we can define the com-
plex VW € Qcoh(X) and V @ W := I'(X, VW). The functor ® is
left exact (as can be seen locally), and we can define its derived functor
VéW € DP coh(X). We can then define the functor VéW = RF(V&W)
(no longer left or right exact) on the derived category which is a dg
functor in each component. When V,W are locally finitely generated,

N L
VRW € D°coh(X) is a perfect complex of coherent sheaves, hence V@ W
is a finite complex of finite vector spaces.

5.4 Formal charts and higher Hom

Lemma 8. 1. For a pair of objects V,W € Sm, the derived Hom space
is computed by the limit in the derived category

rHom(V, W) = hOliHl(pr)EN (rHomHPQ(VpQ, WPQ)) .

Further, this quasiisomorphism is compatible with the fibered struc-
ture of Sm over Xc//W. Namely,

RHom(V, ) & li j7© (RHomHPQ (Vpo, WPQ)) :

where we take j : Xpo — X the finite flat map of the previous
section.

2. For a pair of objects V € Sm and W € SimL, we have

— L
W ® V = holim Wpg OHpo Vpo,
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and, similarly, the inner derived Hom
L L
VW 2 holimy Wpo®Vpa,

L
where Wpo®Vpg are viewed as derived pushforwards from coh(Xpo)
to coh(X).

In order to prove this lemma we will give an alternative glueing of the
compactified category Sm out of formal representation categories Smpg
fibered over punctured formal neighborhoods of closed strata in X. Now
write Xpg := Spp N Xpg for the formal neighborhood of Spp in Xpp
intersected with Xpgo. This is an n-dimensional formal scheme which is a
product of one-dimensional tori, disks, and formal disks. Now we observe
that the rings Hpo are canonically fibered along the Xpg, and we can
base change to get rings Hpgo, with representation categories Smpg. It is
then straightforward to see that an ob jectAV of Sm is equivalent to a com-
patible system of representations Vpg of Hpg. Now the spaces Xpgo form
a Cech cover of X, so that for two sheaves F, F’' on X, we can compute
rHom(F, F') = holimy (Homx, o (FlxpesF |xpo)), and similarly for

L

F®F'. This implies from our fibered property that also given two objects

V,W in Sm, we have rHom(V, W) 2 holimy (Homgpg(@ag,ﬁ%g)) ,
_ _L__ ~ L —

and (for V an object of SmL) we have VW 2 holimas (VPQ OnHpo ng) .

Now we observe that, fixing P, both the colimits

holimgo~p (Homﬁpg (‘7PQ7 /W‘PQ)) and

holimo>p (Homuro)(Vre, Wre))

compute the same complex which is the complex H/.; ((Xp, Xp \ Sp), Hom(Vpp, Wpp)),
computing the relative coherent cohomology of the sheaf Hom Xp (Vpp, Wpp)

relative to the complement to the closed stratum. This means that we

can introduce filtrations on the complexes

holim rHomy; ., (VPo, Wpo) and

R Hom(V, W) 2 holim rHomg (Vpo, ng)

compatible relative to the obvious map R Hom(V, W) — holimyx Homy,., (Vro, Wpo),
which induce isomorphisms on associated graded components. The argu-

L _
ments for V& V' are analogous. This proves the lemma.

5.5 Noncommutative pushforwards

We've defined the forgetful functors ypg : Sm — Smpg; these are exact,
hence have obvious derived analogues jpo : D’Sm — Smpgo . These func-
tors are noncommutative analogues of affine pull-back and so it makes
sense to look for a right adjoint functor RyT<. It is proved in [BK2] that
it is possible to define a sheaf of algebras A over X¢//W such that Sm
is equivalent to the category of sheaves of modules Sm(A). Now Hpo
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induces a sheaf of algebras Apg over Xpg such that the category of
sheaves of representations of Apg is equivalent to Smpg . Write 572 Apo
for the algebra H considered as an algebra over X via the map of algebraic
varieties jpo : Xpg — X. Then it follows from formal arguments that
the functor jpo interpreted as a functor A — Mod — jPC Apg — Mod is
given by tensor product with some bimodule Mpg flat over both A and
jPC Apg. From this it follows formally that we have a well-defined right
adjoint functor 57< to JPo, whose derived functor will give a left adjoint
in the derived category, RyP2. We will not write down a formula for the
affine components of (R77<(Vpg))pror here (as it is rather involved), but
rather just use the existence of this adjoint functor.

5.6 Dg functors out of Sm

Now we are ready to characterize DG functors from Sm to an arbitrary
dg category C.

Lemma 9. Suppose that C is a dg category with all colimits. Then a
colimit-preserving functor D°Sm — C is equivalent to a collection of ob-
jects Apg of C with right actions by Hpg, together with compatible iden-
tifications ]g/QQ/A’PQ > Apigr, where the functor ]g/QQ/(A) = (A ®Hpy
Hpor)u,, is defined as a colimit in the category C.

Proof. Define Funjecar for the category of collections Apg as above and
Fun(D*Sm, C) for the category of (dg) colimit-compatible functors. Then
we have a functor a : Funjecal — Fun(DSm, C) given by a({Xpo}) : V
holim ng@ypgv and § : Fun(D®Sm, C) — Funjecal given by B(F)pg :=
F(3(Hpe)) (which have obvious right Hpg-action as Hpgo-modules). It
follows from the previous two subsections that «, 3 are inverse to each
other. O

Notation. We call the data Xpg like in Lemma 9 the kernel of the
functor F := a({Xpa}). The notation comes from the theory of Fourier-
Mukai kernels, since in fact, the data of {Xpo} above is most naturally
an object of the tensor product category Sm X C.

In Section 7, we will write down a kernel {£ocpg} which we will use
to define the localization functor Loc.

6 Algebra on the building

In this section we write down some standard results about the derived
category of G-equivariant cosheaves on the Bruhat-Tits building. Our
main sources are [BThes] and [Cu].

6.1 Models for sheaves and cosheaves

Definition 14. Write CoSh€ for the category of cosheaves on the build-
ing B which are constructible with respect to the cellular stratification and
equivariant with respect to the G-action on B. Equivalently, this is the
opposite category of the category of sheaves with values in Vect?.
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Given any point € ¢ C B and cosheaf V € CoSh®, the costalk
V. has action by the parahoric subgroup G,. Because the strata of the
cellular stratification are contractible, the data of these stalks together
with the specialization morphisms on costalks is sufficient to reconstruct
V. More precisely, choose a top-dimensional cell > C B. Note that as we
are studying sheaves which are constant on cells and the stabilizer G(o)
coincides with the stabilizer G(z) for any = € o, we can unambiguously
write V, for the costalk of V at an arbitrary = € o.

Definition 15. Write PX for the (non-additive) category with objects
cells o C X and morphisms

G(o), o' Co
Homps(o,0") := (@) ,

0, o ¢o
with compositions given by embeddings of subgroups and the group struc-
ture.

This category is generated by the automorphisms G(o) = Autps (o)
together with “specialization” morphisms iy, : 0 — o’ for ¢/ C o (in
fact, it’s enough to take the two cells to be of consecutive dimension).
Then we have

Lemma 10. There is an equivalence of categories between CoSh® and the
category of left modules PYX.— Mod taking a cosheafV to the representation
RV(0) := V,, with Autps(0o) action induced by equivariance and action
of Lyor given by cospecialization morphisms of stalks of cosheaves.

We will abuse notation and go between these two interpretations freely.
The most important category for us will be the category CoSh® of equiv-
ariant cosheaves above. However, it will also be useful for us to have
similar “representation-theoretic” models for the categories CoSh (non-
equivariant cosheaves) as well as the categories Sh®, Sh of equivariant
and non-equivariant sheaves on B. We define another poset category.
Definition 16. Define the category PB to be the poset of closed cells of
B, ordered by reverse containment.

Now the same arguments as above give us the following equivalences.
Lemma 11. With this definition, we have

1. The category of nonequivariant cosheaves CoShg is equivalent to the
category of representations of the category PB

2. The category of equivariant sheaves ShS is equivalent to the category
of representations of the opposite category PY°P.

8. The category of nonequivariant sheaves Shg is equivalent to the cat-
egory of representations of PB°P. O

In particular, as the pairs of categories Sh, CoSh and Sh®, CoSh®
can be interpreted as representation categories of opposite rings, we obtain
tensor product functors ® : Sh x CoSh — Vect and ® : Sh® x CoSh® —

L
Vect, as well as left derived versions ®.
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6.2 Projective and injective objects

We will be interested in the derived category D® CoSh€. Tt will be con-
venient for us to have a notion of derived tensor product between sheaves
and cosheaves. Namely, for a sheaf V € Shg and a cosheaf V' € CoShg,
write V®pp V'’ for the tensor product of V, V' as right and left PB-modules.
We define tensor product V® ps: similarly for V € Sh®, )’ € CoSh®, and

L
write V ® V'’ for the derived functor. By standard homological-algebraic
arguments, this derived tensor product can be computed in terms of a
projective resolution of either side. We will be especially interested in the

L
case V = C the constant sheaf, in which case as we will see C @pp V'
returns the homology of the cosheaf V'. First, we recall from [BThes] a
classification of projective objects in Sh¢ .

Definition 17. Given a cell o C B and a vector space V, write %o (V)
for the constant sheaf on the stellar neighborhood of o.

This definition has an equivariant analogue,

Definition 18. Given a cell o and a representation V, of G(o), write
*5(Vs) € PY — Mod for the sheaf with %o (Vo)or = Vg if o’ Do
and O otherwise, where for any pair of cells ¢’ D o the cospecialization
morphism %o (Vo)o A *o(Vo)or is the identity map.

Lemma 12 ([BThes]). The sheaves % (V) for V irreducible are a com-
plete collection of indecomposable projectives in Sh. Their dual cosheaves,

* (V) for V irreducible form a complete collection of indecomposable in-
jectives in CoSh€. O

Lemma 13 ([BThes]). Any sheaf V € Sh has a projective resolution

@*UVU% @ *UVT(—...<— @ *UVT—)O

oCS o7, |o|—|r|=1 oD, |o|=|r|=n
%

and, analogously, every sheaf V € Sh® has a projective resolution

@*UVU% @ *UVT(—...<— @ *UVT—>O

oCS o7, |o|—|r|=1 oD, |o|=|r|=n
%

This in particular tells us that Sh and Sh® have projective dimension

L
n. Additionally, it gives us a formula for a complex ¥V ® W as follows
indexed by pairs o D 7:

@ Vo (®G<7 We @ 1Z5 ®G(a) Weo = ... @ HomG(a) Vo ®G(a—) Wo

oCx® lo|=|T|=1 lo|=|T|=n

quasi-iso

L
Veow,
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both in the equivariant and the non-equivariant settings. Putting in
V = Cy the constant sheaf, we recover the standard complex RI'.(V) com-
puting the homology of B with coefficients in W, with respect to the bari-
centric subdivision of our cellular decomposition. Putting in V = @B/@
the constant sheaf viewed as an object of Sh®, we recover a complex
computing RI'(V)n¢a, the derived G-coinvariants in the homology of W.

6.3 Constant sheaves on orbifold subsets

Here we will introduce a class of sheaves corresponding to “étale sub-
orbifolds” S/H of B/G. We will use the notations B, G for the building
and the group G, although the same analysis will apply to an arbitrary
polyhedrally stratified locally finite CW complex B with smooth action by
a totally disconnected topological group G with compact open stabilizers.
Suppose that S C B is a (closed, cellular) subset and H C G a closed
subgroup fixing S. Then we define the G-equivariant topological space
GxgS = G;S, where H acts diagonally. We define the “action map”
B:G xy S — B via (g,z) — gz, and define

QS/H = Bi(Cqy Us)y

the “constant cosheaf on the orbifold S/H”, to be the !-pushforward of
the constant cosheaf on G Xy S via 8. This is the sheaf whose stalk
over a point  C B is the vector space of compactly supported functions
on G/G(z) NU. (Here G(z) is the stabilizer of = in G, equivalently the
stabilizer of a small symmetric open neighborhood of z). We have the
following important observation.

Proposition 14. RI'.(Cg,;) = Ha Xy RTc(S).

This follows from the fact that RI.(V) := Rpt,(V), for pt : B — = the
map to a point, hence

RIV(RAICsy y0)) = Bpty (C(S xm G)) = Cu(S xu G).

(Here we write C. to denote the complex of chains.) The terminology of
constant cosheaf is motivated by the fact that Cg,f € CoSh€ corepre-
sents the functor of invariants in cochains,

rHom(Cg, , V) = C7 (S, vy

for arbitrary ¥V € CoSh. In particular, if we have S; C S2 and H; C
Hs, then we have a canonical map ¢ : Qél JH, Q%Q /1, corresponding
to the constant section on S; of the constant sheaf on S,. In fact, this
construction can be extended. Let G (s, s,y C G be the collection of all
v € G with v(S1) C Ss.

Definition 19. Given two subsets S1,Se C B invariant with respect to
Hi, H> C G, respectively, define the “geometric Hom”

Homgeom (S1/H,S2/Hs) = (H2\G(s, 5,)) ™"
to be the set of right Hi-invariant points in the quotient Ho\Gs, /1, s,/ Ho
(with evident right Hi-action).
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Then the space Cgpy Homgeom (S1/H1,S2/Hz) of compactly supported lo-
cally constant functions on Homgeom (S1/H1,S2/H2) (viewed as a com-
plex concentrated in degree 0) maps to Homgogne (Cs,/my s Csyym,) =
H° rHom b cosnG (Cs, /1y s Cs, /11, ). Note that Homgeom (S1/H1,S2/Hz) de-
fines a category structure on pairs S/H (with H C G acting on S C B),
and the map

Cé’;’t Homgeom (Sl/Hl, §2/H2) — HOmCOShG ((Cgl /Hy>s CSl/Hg)

is compatible with this category structure.

7 Definition of the localization functor

7.1 Corridors

There is a tradition of making papers on Bruhat-Tits theory read like
manuals on real estate. Buildings contain apartments that consist of al-
coves. There is however a problem with buildings that until now has not
been resolved: there is no a priori way of getting from one apartment to
another. Here we will finally propose a solution for the long-suffering ten-
ants. We will introduce a notion of corridors, parametrized by standard
parabolic subgroups Q, each of which connects together all apartments
along a Weyl chamber corresponding to Q.

Fix a basepoint of the building, o € B, fixed by a maximal compact
K C G. Write ng : B — A for the projection to the quotient A =2
B/Ug. For a standard parabolic @ DO B, write Aé for the kernel of the
composition A € T — Q — L — X*(L/[L,L]). Then A5 ® R acts on
A. Write Ag := A/AJQ‘ ® R and g : B — Ag for the evident composed
projection. Write A5 C Ag for the cone of all points strictly smaller than
mo(xo) in the usual poset structure on the coweight lattice of G.

Definition 20. The standard corridor of type Q is the preimage Do :=
T5' (Ag) CB.
Example. Let G = SL2(Q2). Then

e D¢ is the whole building B.

o Dg is the contractible graph that looks like this.

Figure 2: Dg for SLy

From the “hyperbolic” point of view, corridors should be thought of
as cylinders in the parabolic geometry, tangent to the boundary (in the
polyhedral compactification, see [La] or section 8.1) at a parabolic sub-
space (which will always be a building for a Levi subgroup). For example,
Dp in the example above is a disk that meets the boundary at a point:
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Figure 3: Hyperbolic corridor

In particular, we have the following theorem about the geometry of
corridors.

Theorem 15.
1. Dp is convex and contractible.
2. The normalizer of the standard corridor Dp is L°Up.

3. For two corridors Dp,Dq and v € G we have yDp C Dq if and only
if PCQ andyc Q™.

4. Suppose v € Lg+ such that it is not in any Lgl'*' for P C P. Then
the union Up>0y "Dg = Dp.

We will not give a proof of these relatively straightforward results here.

7.2 The localization kernel

Note that each Dg (being a preimage of a subset of B/Ug) is invariant
with respect to the unitary group Ug, hence also invariant with respect
to all Up (which are contained in Ug). Now our localization kernel £oc
will be constructed out of the equivariant cosheaves

SUCPQ = QDQ/U’P

in the terminology of section 6.3.
Namely, observe that for two arbitrary parabolics Q, Q’, Theorem 15
implies that the set of elements sending Do to Dy is

1/2 IIQ/ Q C Q,
¢ Por) {@ l ’ Q ,¢_ Q,
This means that

LIQI"IUP

Homgeom (Do /Up, Doy /Upr) = (Up\L§,Ua))"? = ((Upr N Lo \LS )

solongas P Cc PC QcC Q. If P=Q =P = Q, then we
have L%JrUp C LEUQ, which is bi-invariant with respect to Up, and so
L2 C Homgeom (Do /Up, Do /Up). This gives us the desired Lp-action.
Further, we have tautologically for P C Q that Locp/ o = (LOCPQ)UPI .

The identity class 1-Ups C L’é, Ug is right Up-invariant (since Ups D Up),
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hence gives a class Lg/QQI € Homgeom (Dp/Q,Dp//Q’), inducing a map

LZ;IQQ, : (SOCPQ)UP/ — Locpo, which is visibly L%*—equivariant. In order
to check that the Locpo indeed define a kernel, we need to check that
the map Locpg ®L%+ £%I+ — Locpgor adjoint to ng is an isomorphism.
This follows from part 4 of Theorem 15. Having checked conditions of
Lemma 9, we get a functor Loc : Sm — CoSh® defined as follows.

Definition 21. Define
Loc(V) := holimpg Locpo®@ipg Vrg = holimpo Cp, /iy, @4po Vo € D° CoSh® .
We introduce also some notation for the “affine components” of Loc,

namely
Definition 22. We define the functor Locpo : Smpg — CoSh® by

Locpo : Vpo = Vpo @npo Cpy jup

for Vpg a reprsentation of Hpo.

Recall here that Cy,  /;,, is defined as the I-pushforward of the constant
sheaf on Dg Xy, G under the action map 8 : G Xy, Dg — B. This means
that we can describe the stalks of Do /Up alternatively via the following
definition.

Definition 23. Define

_{1€Gly-Dooo}

Hpo : i C Up\G.

This is an open subset of G/Up left invariant with respect to G(o) and
right invariant with respect to L;QQ C Homgeom (Do /Up,Dg /Up).

Proposition 16. We can then have
Locpg == O (Hpg).

Definition 24. Define (abusing notation somewhat) Loc° for the G(o)-

equivariant object of the right compactified category (STnR)G(") to be the
object with affine components Lochg, and evident componentwise G(o)-
action.

From our definition of kernels, we now have:

L
Proposition 17. With this notation, have stalks Loc(V ), = £oc® Q@ V.

Having defined the functor, we begin verifying its properties.
Lemma 18. For any sheaf V € Sm, we have canonically RT. Loc(V) =
V.

Proof. We will prove a corresponding statement independently for each
component Locpg.

Proposition 19. RI'.Locpg Vrpo = Vpgo ®L%+ Hip @Lp CZ(Up\G).
Proof. It suffices to check this in the universal case, with Vpg = Hpg, in

which case it follows from Proposition 14 and the contractibility of Do,
(Theorem 15, part 1). O
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Note that this proposition in particular implies that, given an object
V of the compactified category, RI'.(Locpo(V)) = RI'.(Locpg:(V)) for
any Q' D Q (as Vpg ®, o+ Hrp is independent of Q). Now since all our
functors are dg functors gnd commute with finite homotopy limits, we can
compute RI.(Loc(V)) as the limit of R['.(Locpo(Vpo)), giving

RT. (LOC(V)) = holimp, o Vpo ®L7Q>+ CSO(G/UP)

Thus decomposing the partially ordered set A of pairs (P, Q) into sub-
categories (P, —) C N, we are taking the homotopy limit along a diagram
which is constant along each (P, —). Since each of these categories has a
terminal object: namely, (P, G), the nerve of the corresponding subcate-
gories is contractible, and the limit computation can be simplified to

holimp Vip ¢) ®Lp C(G/Up).

But the subcategory (P,G) C N, in turn, has a terminal object, namely,

(G,G) leaving us with RTc(Loc(V)) & Vig,q) @u H 2 V.
Remark 2. For SLs, the category N has three objects, and looks like
this:

(B,B) = (B,G) = (G,G),

and the colimit computation above then identifies the homotopy limit of
the fibered product diagram

\%

Vs @1 C°(G/Us) — Vi @1 C(G/Us)

with V' (note that the colimit of any diagram of the form A = A < B is
B).

This concludes the proof. O

The next lemma establishes that Loc(V') almost has finite-dimensional
stalks when V' € Smyy. In the next chapter, we will see how to get rid of
the “almost”.

Lemma 20. So long as V is locally finitely generated, Loc(V) has stalks
that have finite-dimensional invariants with respect to open compact sub-
groups.

Proof. Since G(o) is compact, taking invariants with respect to an open
subgroup is an exact functor, and hence for J C G(¢), we have 7 Loc(V) =
V®7(Loc”). Now it is sufficient to show (see Section 5.3.2) that 7 (£oc?) is
locally finitely-generated. In order to see this, we observe that JSOC%Q =
C(J\Hpo) is the space of compactly supported functions on the sub-
set J\Hpg of the discrete double quotient J\G/Up. Now in the special
case J = G(o), the double quotient J\Hpo C G(0)\G/U can be iden-

tified with the collection of cells of ¢/ C A of the apartment which are
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W-conjugate to o and satisfy o = xo (in the partial order induced by po-
larization on A = B/Ug). Hence it is generated over AE by finitely many
classes (corresponding to the minimal cells in each A-conjugacy class of
W - ). Let these generators be {z;} € G(c)\G/U. Then their finitely
many preimages in J\G/U will give a generating set for 7 (£oc”). This
gives us finite generation of (£oc%g)”, and completes our proof. O

8 The truncated localization functor

Fix an integer e > 1, which we will assume to be chosen larger than the
depth of our compactified representation V. The paper [SS] defines a
conjugation invariant system of open normal subgroups Gsfe) 4G4 indexed
by cells 0 C B, with the property that G c G for 7 C 0. This allows
us to define a “truncation” functor I : CoSh(® — CoSh(® defined as
follows:

Definition 25. For V € CoSh® define IV € CoSh'® to be the cosheaf
whose stalks are invariants,

(e
1Y), = (VG)G")

with respect to the (“Schneider-Stuhler”) system of subgroups above.
Definition 26. Define Loc(® to be the composition I'®) oLoc : Sm — Sh.

By Lemma 20, the functors Loc(®) have finite-dimensional cohomology
of stalks. This section will be devoted to proving the following theorem.

Theorem 21. Suppose that V € Sm has depth < e. Then the compactly
supported global sections, RT.(Loc(V)®)

In fact, we will prove a stronger result.
Definition 27. Define Locgf)Q =1 Locpg : Sm — CoSh.
Then we have

Theorem 22. Suppose Vpg € Smpg has depth < e. Then the compactly
supported global sections,

RT. (Locgf)g(vpg)) ~ RT. (Locpo(Vra)) .

8.1 Building combinatorics

We will give here some reminders about the theory of buildings and the
polyhedral compactification of [La]. This subsection and the next will
be inspired by constructions and notation in the paper [MS]. We will
take a combinatorial point of view based on the Weyl partial order on
the coweight lattice. Namely, for an algebraic group G, write T for its
torus, with lattice of characters (the weight lattice) X*(T) and lattice
of coweights X, (T). We will choose a uniformizer w € G,,(K), and
write A C T for the lattice A = X,(T) of coweights embedded in the
K-point group T := T(K) via multipowers of the uniformizer. Write
Ar := A ® R and choose a polarization on G. Let x1,...,zn, € AV be the
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collection of simple roots. Let AT C A be the sublattice of all element
which pair positively with the x;. This is naturally identified (via the
metric) with a Weyl chamber. We define a partial order on A with a < 8
if —ac Aﬂ'g. Now to any torus 7' C G there corresponds an apartment
Ar C G. If we choose a containment T C B in a Borel (equivalently,
a polarization), then we get a partial order on A with a > b when we
have a containment of stabilizers U(a) D U(b) in the unipotent radical
U C B. This partial order satisfies w”a > a if and only if A € AT (where
the parametrized embedding A C T is determined by the polarization as
above). In particular, if we choose in addition a x € A, we get a canonical
identification A = Ar compatible with partial order.

We will use the shorthand notation polarized apartment to denote an
apartment with choice of partial order corresponding to a pair T' C B as
above.

Definition 28 (Meyer and Solleveld). The convex hull of two cells o, 7 C
B, denoted 7,7, is the intersection of all apartments containing both o and
7. More generally, the convexr hull of a subset I' C B is the union of all
convex hulls of pairs of points of I'. This notion generalizes in an obvious
way to a subset ' C B

Remark 3. The idea behind this terminology is to replace the notion of
a geodesic line segment, which is the collection of points on a shortest
path between a,b, by a “partially ordered geodesic line segment”, which is
the collection of points x in a parametrized apartment between a,b € B
which satisfy a <X x X b in the Weyl partial order corresponding to the
parametrization.

Definition 29. Given a point x € A in a polarized apartment, we say
that a subset R C A with the data of a partial order is a geodesic ray out
of x in the given polarization if R is cofinal with minimal point x in the
partial order, i.e. if any y € R satisfies y = x and for any pair v,y € R,
there is 2 € R with z = y,z = y'.

Remark 4. We are not using the usual notion of metric on the Bruhat-
Tits building, and a geodesic ray is in general not one-dimensional.

For an arbitrary pair of points z,y, there is then a unique geodesic
ray m with minimal point  and maximal point y. If 0,0’ are a pair of
closed simplices, then there is a unique vertex = € o,y € o’ such that ﬂ

contains both o and ¢’. We define 0,0’ to be this subset (with induced
partial order).

Remark 5. The notion of a geodesic ray allows us to define the polyhedral
compactification of B (see [Laj) as follows. Define B to be the quotient of
the collection of closed geodesic rays R C B by the equivalence relation that
R ~ R if RNR' is cofinal in both R and R'. In particular, the convex hulls
T,y and x',y (with partial order such that y is mazimal) are equivalent as
their intersection contains y. This gives the embedding B C B.

8.2 Consistent systems of idempotents

Definition 30 (Meyer and Solleveld). Let V be a vector space with action
of G. We say that a system of idempotents E, € Endc V' indexed by cells
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of the building is consistent if it satisfies the following three properties.

(a) (local commutativity) E,, E- commute if o,T are in the closure of
the same face

(b) (local multiplicativity) The idempotent corresponding to a cell is the
product of those corresponding to its vertices, i.e. Ey = HIGJO E..

(c) (convexity) For any triple of cells T,0,0" with T C o and o in the
convez hull of T,0’, we have the identity E,E, = E.E,/.

Lemma 23 (Meyer and Solleveld). For any depth e > 1, the idempotents
EY) =G form a consistent system of idempotents. O

We mention that in the proof of [MS], property b above is reduced to
the following group identity, which will be useful to us as well:

Proposition 24 (Meyer and Solleveld). G . G(Te,) >aY. O

Given a system E = {E,} of consistent idempotents, write V¥ for the
coefficient system with the vector space Vo over cell o. Note that this is
admits a map to the constant coefficient system V.

Lemma 25 (Meyer and Solleveld). For any consistent system of idempo-
tents {Es} and any closed convex subset I' C B, the derived global sections
RT(VF) are quasiisomorphic to the vector space > VFe C V concentrated
in degree 0. This identification is consistent with the embedding of coeffi-
cient systems RI'(VF) c RI'(V) = V/[0]. O

Choose a parabolic P D B. Now let Vp = iprpHr, = C(G/Up).
We have two algebras acting on Vp. First, Hg acts via the usual repre-
sentation structure. Secondly, the commutative algebra

R = C®(G/U)

of all locally constant functions acts on compactly supported functions
by multiplication. The two actions combine into an action of the crossed
product algebra
AP = R#G

Now choose another parabolic @ D P. Observe that the subsets H];g
giving local action of the localization functor correspond to idempotent
functions 679 on R, and that these are preserved by the subgroups G,
hence commute with the idempotents ES” = §(GS”) (hence their products
are idempotent). To unburden notation, write

5, 1= oL@+

& = E' and
P, = 6,E,.

~

The idempotents ®, act on the space Vp = ipHr, of compactly sup-
ported functions, and have image Loc;(Qe) (Hpo) (compactly supported,
G _equivariant functions on HZQ ¢ G /Up). Up to a universality argu-
ment, it suffices for us to prove the following.

Proposition 26. The idempotents E;S)
idempotents.

form a consistent system of
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Proof. 1t will be convenient for us to give a formula for products of
functions of the form §,. Namely, given an element v € G/Up, write
]D),Cf =y ]D)f;? for the corresponding corridor (of type @). Recall that the
space HE? is the collection of all v € G/U such that o C Dg. Because
corridors are convex and closed, we can multiply idempotents of the form
0o in the following way. Suppose that o1,...,0x are a collection of cells
(of arbitrary dimension). Write X for the convex hull of the closed cells
7i. Write Hy, = {y € G/U | DY D £}. By convexity of corridors, we have
HE® in this case is the intersection of all HE® c G/Up. Write éx for
the corresponding characteristic function. We deduce that we have the
following formula.

Lemma 27. We have
k

[[6-. =05
=1

with 3 the convex hull of the closed cells &; as above. O

In order to prove proposition 26, we need to check the three properties
of Definition 30 for the ®,. By Meyer and Solleveld’s Lemma 23, we
have consistency of the £, and the lemma 27 applied to the vertices of a
single cell cell gives us the local multiplicativity property for the system of
idempotents ,. The other two properties are obvious from commutativity
of the d,, giving us consistency of the system {d,} as well. Note that
this is not yet good enough to give us the desired consistency of the
{®,} = {€+65} as €, may not commute with 6,/ for o, 0’ far apart.

First, we observe that local commutativity and multiplicativity follows
from the corresponding properties of the systems {&,}, {d-} by checking
that idempotents of the two systems mutually commute at nearby vertices.

Claim. the idempotents £;,E,1,5, and 8, pairwise commute for T, both
in the closure of a cell o.

The only pairs for which we still need to check this are (€,/,4,) and
(E+,0,/). Now we have by construction that G(:}) c GY) c G, (see [S9),
1.2, where these groups are called Ul(f)), Since G, normalizes H?, the
idempotents £,/ and 6, commute and we are done WLOG. O

It remains for us to check convexity. Note that, fixing a Haar measure,
the twisted product A = R#G can be identified with locally constant
functions on G/U x G which are supported over a bounded subset of G.
Product is computed via the multiplication kernel

T #Yd(G/U)AG - ' #7'd(G/U)AG := 8y e - x#yY d(G/U)AG.

Suppose we have a triple 7 C o, and 7' such that ¢ C 77 is in the
convex hull (of the open cells). Write X := 7,7’ for the convex hull of the
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closures of the cells, which coincides with 7. We compute

dvyd d~'dn’
B :/ 7(e? el / 7(6:7 n'#y'
vec{® nec/up,sr |G| v'eG') weG/um, 57 |G|
1)

6(n, (")) #ry (2)

_ / dydnd~'dn’
-

€6 pyo7,4'€G) Dy o7 [EUR |G(j)|

Where we are using the notation §(n,n’) for the delta measure on the
diagonal n = (n’)”. Now note that for v € G-, the conditions D,, >
7,0,y 7" and n = (n')” together are equivalent to D, > 7,1D,, > y7’ and
n = 17“’71, which can further be reduced to D, D vX (as 7 = 7). This
lets us rewrite

drydr'dn

Or&pr = / —————n#ry (3
€6 71€G(S) neG /U, oz |GY] - |G|

Now note that multiplying v in the above expression on the right by any
element o € G that fixes ¥ and is contained in the product G(TE)G(:;) will

not change the result. In particular, this is true for any ~o € G((f) N Gs.
Write Go := G NGy and averaging over 9 € G as above, we can safely
introduce a new variable 7 in the integral above:

&b — / dydryody'dn
v€G) 10€G0,v/€G') neG/UD, D (1)S \G(Te)| -|Gol - |G

Orliataal
T/ |

(4)
Now we observe that G(Te) -Gy = fol as we know from Proposition 24

that G%® ~G£e/) D Ggf), so it follows that G - (G:e/) N Ggf)) = G,

Using this identity (and some obvious homogeneity considerations), the
expression above can be rewritten as

dryd~'dn
P P :/ Wn#’yf}/ (5)
~veGS) A €G_, meG/UD, |Gl |G|
which, by the arguments above, =0,P,./.. (6)
This concludes the proof that the ®, are coherent. O

From this we deduce by Lemma 25 that the derived global sections
of the cosheaf 0 — &, - C°(G/U) = Locg)Q (Hpq) have no higher coho-
mology, and in degree zero give the subspace of C5°(G/U) spanned by
all ,C°(G/U), which evidently are equivalent to the depth-e compo-
nent of C°(G/U) (see this by moving o towards the boundary in the
direction of the polarization on A). Thus the natural transformation
Locff(z? (Hpo) — (Locpo(Hpg))'® is an equivalence on global sections.
As both functors, as well as RI'. are derived exact and commute with all
colimits, and since H pg has right action by Hpg that commutes with the
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left module structure, this implies that for any module Vpg over Hpg of
depth < e, we have

TcLoct), Vpo 2 T Lock) (Hpo @1po (VPQ))
= (T Locrq(HPo)) @1po (Veg) 2 TeLocpq(V),

where for a representation V' € Sm(G), we define V(¢ to be its depth-< e
component. From this we deduce that RI'. (Loc(e)(V)) & RI. Loc(V),
which by Lemma 18 is just V.

With Theorem 21 in hand, our main result, Theorem 2 easily fol-
lows. Namely, given an arbitrary V € Sm of depth < e, write [V] €
K°(Smy,) a preimage of the class [V] € Smy,(G), which exists by Corol-
lary 7. Write LocY®) for the fiber over o of Loc(® . As these are dg
functors, they define maps on K-theory [Locgf) ]. Now from the iden-

tity V 2 RI:Loc(V) = RI'.Loc(V) (and using Lemma 20) we deduce
(V] = [Ind] 32, e (—1) ! [Loct”)([V]). =
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