Math 113 Homework 4, selected solutions

1, Book exercises: 5.1-5.6: determine whether the following groups are subgroups of the group \mathbb{C} of complex numbers under addition.
5.1, \mathbb{R} Yes: \mathbb{R} is closed under addition, $0 \in \mathbb{R}$, and if $r \in \mathbb{R}$ then $-r \in \mathbb{R}$ so closed under additive inverse.
$5.2,^{+}$(positive rational numbers) No. Closure under + holds but not identity or inverse axioms $\left(0 \notin \mathbb{Q}^{+}\right.$and $-2 \notin \mathbb{Q}^{+}$though $\left.2 \in \mathbb{Q}^{+}\right)$.
$5.3,7 \mathbb{Z}$ Yes. Closed under addition, $0 \in 7 \mathbb{Z}$ and closed under additive inverse.
$5.4, i \mathbb{R}$ the set of purely imaginary numbers including 0 Yes. Closed under addition, $0=0 \cdot i \in i \mathbb{R}$ and closed under inverse.
5.5, the set $\pi \mathbb{Q}$ of rational multiples of π Yes. Closed under addition, $0=0 \cdot \pi \in \pi \mathbb{Q}$ and closed under inverse.
5.6, the set $\left\{\pi^{n} \mid n \in \mathbb{Z}\right\}$. No. 0 is not a power of π, and not closed under addition $\pi+\pi$ is not a power of π).
5.7 Which of these are subgroups of the group \mathbb{C}^{*} of nonzero complex numbers under multiplication?
(1) \mathbb{R} is not even a subset of \mathbb{C}^{*} (since $0 \in \mathbb{R}$ but $0 \notin \mathbb{C}^{*}$), so the question does not make sense.
(2) \mathbb{Q}^{+}, surprisingly, is a mutiplicative subgroup. Indeed, $q \cdot r \in \mathbb{Q}^{+}$(is positive and rational) if both q, r are positive and rational. $1 \in \mathbb{Q}^{+}$and the inverse of a positive rational number is positive and rational.
(3) $7 \mathbb{Z}$ no. It is not a subset of \mathbb{C}^{*}, as $0 \in 7 \mathbb{Z}$. (If one were to remove 0 to turn it into $7 \mathbb{Z}^{*}$, it would be closed but not have the unit element, $1 \notin 7 \mathbb{Z}^{*}$.)
(4) $i \mathbb{R}$ no. Not a subset of \mathbb{C}^{*}. (If we were to remove 0 to turn it into $i \mathbb{R}^{*}$ then it still wouldn't be: for example $i \cdot i=-1 \notin i \mathbb{R}^{*}$.)
(5) The set $\pi \mathbb{Q}$ of rational multiples of π is not a subset of \mathbb{C}^{*}.
(6) $\pi^{n} \mid n \in \mathbb{Z}$ is a subgroup! It is contained in \mathbb{C}^{*} (no power of π is equal to 0), it is closed under \cdot, contains the identity elemetn $1 \in \mathbb{C}^{*}$ and is closed under inverse. In fact, it is a cyclic subgroup generated by π : so $\left\{\pi^{n} \mid n \in \mathbb{Z}\right\}\langle\pi\rangle \subseteq \mathbb{C}^{*}$
5. (a) Write down an addition table for the Klein 4-group V (look it up in the book!). Write down an addition table for the Gaussian numbers modulo 2 , i.e. $\mathbb{G} / 2 \cdot \mathbb{G}$. Give a function $V \rightarrow \mathbb{G} / 2 \cdot \mathbb{G}$ which takes one table to the other (i.e. is an isomorphism). ${ }^{1}$

	e	a	a^{2}	b	c	d
e	e	a	a^{2}	b	c	d
a	a	a^{2}	e	c	d	b
a^{2}	a^{2}	e	a	d	b	c
b	b	d	c	e	a^{2}	a
c	c	b	d	a	e	a^{2}
d	d	c	b	a^{2}	a	e

(b) Recall that the direct product $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ is the group of pairs ([a], [b]) of residues modulo n with componentwise addition $([a],[b])+\left(\left[a^{\prime}\right],\left[b^{\prime}\right]\right)=\left(\left[a+a^{\prime}\right],\left[b+b^{\prime}\right]\right)$. Construct an isomorphism from $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ to $(\mathbb{G} / n \cdot \mathbb{G},+)$.
6. Extra credit, worth either $1 / 2$ a problem or alternatively write "doing this problem instead of problem x" to replace one of problems 1.-4. but not 5: book exercise 4.29

