Math 113 Homework 4, selected solutions

1, Book exercises: 5.1-5.6: determine whether the following groups are subgroups of the group \mathbb{C} of complex numbers under addition.

5.1, \mathbb{R} Yes: \mathbb{R} is closed under addition, $0 \in \mathbb{R}$, and if $r \in \mathbb{R}$ then $-r \in \mathbb{R}$ so closed under additive inverse.

5.2, ⁺ (positive rational numbers) No. Closure under + holds but not identity or inverse axioms $(0 \notin \mathbb{Q}^+ \text{ and } -2 \notin \mathbb{Q}^+ \text{ though } 2 \in \mathbb{Q}^+)$.

5.3, $7\mathbb{Z}$ Yes. Closed under addition, $0 \in 7\mathbb{Z}$ and closed under additive inverse.

5.4, $i\mathbb{R}$ the set of purely imaginary numbers including 0 Yes. Closed under addition, $0 = 0 \cdot i \in i\mathbb{R}$ and closed under inverse.

5.5, the set $\pi \mathbb{Q}$ of rational multiples of π Yes. Closed under addition, $0 = 0 \cdot \pi \in \pi \mathbb{Q}$ and closed under inverse.

5.6, the set $\{\pi^n \mid n \in \mathbb{Z}\}$. No. 0 is not a power of π , and not closed under addition $\pi + \pi$ is not a power of π).

5.7 Which of these are subgroups of the group \mathbb{C}^* of nonzero complex numbers under multiplication?

(1) \mathbb{R} is not even a subset of \mathbb{C}^* (since $0 \in \mathbb{R}$ but $0 \notin \mathbb{C}^*$), so the question does not make sense.

(2) \mathbb{Q}^+ , surprisingly, is a mutiplicative subgroup. Indeed, $q \cdot r \in \mathbb{Q}^+$ (is positive and rational) if both q, r are positive and rational. $1 \in \mathbb{Q}^+$ and the inverse of a positive rational number is positive and rational.

(3) $7\mathbb{Z}$ no. It is not a subset of \mathbb{C}^* , as $0 \in 7\mathbb{Z}$. (If one were to remove 0 to turn it into $7\mathbb{Z}^*$, it would be closed but not have the unit element, $1 \notin 7\mathbb{Z}^*$.)

(4) $i\mathbb{R}$ no. Not a subset of \mathbb{C}^* . (If we were to remove 0 to turn it into $i\mathbb{R}^*$ then it still wouldn't be: for example $i \cdot i = -1 \notin i\mathbb{R}^*$.)

(5) The set $\pi \mathbb{Q}$ of rational multiples of π is not a subset of \mathbb{C}^* .

(6) $\pi^n \mid n \in \mathbb{Z}$ is a subgroup! It is contained in \mathbb{C}^* (no power of π is equal to 0), it is closed under \cdot , contains the identity element $1 \in \mathbb{C}^*$ and is closed under inverse. In fact, it is a cyclic subgroup generated by π : so $\{\pi^n \mid n \in \mathbb{Z}\} \langle \pi \rangle \subseteq \mathbb{C}^*$

5. (a) Write down an addition table for the Klein 4-group V (look it up in the book!). Write down an addition table for the Gaussian numbers modulo 2, i.e. $\mathbb{G}/2 \cdot \mathbb{G}$. Give a function $V \to \mathbb{G}/2 \cdot \mathbb{G}$ which takes one table to the other (i.e. is an isomorphism).¹

	e	a	a^2	b	c	d
e	e	a	a^2	b	c	d
a	a	a^2	e	c	d	b
a^2	a^2	e	a	d	b	c
b	b	d	c	e	a^2	a
c	c	b	d	a	e	a^2
d	d	c	b	a^2	a	e

(b) Recall that the direct product $\mathbb{Z}_n \times \mathbb{Z}_n$ is the group of pairs ([a], [b]) of residues modulo n with *componentwise* addition ([a], [b]) + ([a'], [b']) = ([a + a'], [b + b']). Construct an isomorphism from $\mathbb{Z}_n \times \mathbb{Z}_n$ to $(\mathbb{G}/n \cdot \mathbb{G}, +)$.

6. Extra credit, worth either 1/2 a problem or alternatively write "doing this problem instead of problem x" to replace one of problems 1.-4. but not 5: **book exercise 4.29**