Math 113 Homework 3, selected solutions

1. Book exercise 3.3: is $\varphi:(\mathbb{Z},+) \rightarrow(\mathbb{Z},+)$ given by $\varphi(n)=2 n$ an isomorphism? No. It is a homomorphism, since $\varphi(a+b)=2(a+b)=\varphi(a)+\varphi(b)$. It is also injective, since $2 a=2 b$ implies $a=b$ for $a, b \in$. But it is not surjective: 1 is not $2 a$ for any integer a !

BTW, it is a little surprising that there is a function from \mathbb{Z} to \mathbb{Z} that is injective but not surjective: wouldn't this imply that \mathbb{Z} is "bigger" than itself? Turns out this is not the case for infinite sets: you can map them to themselves injectively with "room left over". If you're curious, you can look up "infinite hotel" online (or if you want to learn in a little more depth, look up "cardinality" on wikipedia).
3. (a) Show that "two-sided cancellation" holds in groups. I.e., if a, b, \tilde{b}, c are elements of a group G with operation , and $a \cdot b \cdot c=a \cdot \tilde{b} \cdot c$ then $b=\tilde{b}$.

Say $a b c=a \tilde{b} c$. Take both sides of the identity, multiply on the left by a^{-1} (which exists since we're working in a group) and on the right by c^{-1}. We obtain:

$$
b=a^{-1} \cdot a \cdot b \cdot c \cdot c^{-1}=a^{-1} \cdot a \cdot \tilde{b} \cdot c \cdot c^{-1}=\tilde{b}
$$

so $b=\tilde{b}$, as desired. (Notice that when applying this argument it is important that I multiplied by a^{-1} on the left and by b^{-1} on the right - if I was careless about order of factors, they would not cancel, since groups are not in general abelian!)
(b) If G is a group and $g \in G$ is a fixed element, show that the function i_{g} with $i_{g}(x)=g \cdot x \cdot g^{-1}$ is an isomorphism of G with itself. Three things to show. First, homomorphism property:

$$
i_{g}(x) \cdot i_{g}(y)=\left(g \cdot x \cdot g^{-1}\right)(\cdot g \cdot y \cdot g)
$$

By associativity, we can first multiply the $g^{-1} \cdot g$ in the middle (as this involves changing parenthesization, but not order of factors in the expression). Giving us:

$$
=g \cdot x \cdot e \cdot y \cdot g^{-1}=g \cdot x \cdot y \cdot g^{-1}=i_{g}(x y)
$$

This concludes checking the homomorphism property. Now it remains to check bijectivity. As usual, this is done in two steps: Surjectivity: the value x is $i_{g}\left(g^{-1} x g\right)$ (since $\varphi_{g}\left(g^{-1} x g\right)=$ $g\left(g^{-1} x g\right) g^{-1}=e \cdot x \cdot e=x$.) And injectivity: say $i_{g}(x)=i_{g}(\tilde{x})$. Then $g x g^{-1}=g \tilde{x} g^{-1}$, and $x=\tilde{x}$ by part (a).

