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Abstract

We construct a canonical chain of formality quasiisomorphisms for the
operad of chains on framed little disks and the operad of chains on little
disks. The construction is done in terms of logarithmic algebraic geometry
and is remarkable for being rational (and indeed definable integrally) in
de Rham cohomology.
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1 Introduction

Let FLD be the operad of framed little disks. The author showed in [55]
that FLD is equivalent (via a chain of quasiisomorphisms of topological
operads) to the topological realization of an operad FLDlog of operads
in logarithmic algebraic geometry (in the sense of Kato). In this note we
write down explicitly the log spaces and maps involved, and show that
these spaces have an incredibly well-behaved Hodge splitting property
(i.e. quasiisomorphism between cohomology of forms and de Rham co-
homology), which we call the proper acyclicity property, something that
is only possible in the log geometry context. From this property we de-
duce an explicit formality splitting quasiisomorphism between dg operads
H∗(FLD

log,C) and C∗(FLD
log,C). We deduce similar splittings for the

operad LD of little disks as a consequence. Our construction is canon-
ical and explicit. It does not depend on a choice of an associator or a
Frobenius element in the Grothendieck-Teichmüller group, or a choice
of obstruction-theoretic splitting. Its algebro-geometric provenance also
gives it automatic compatibility with a number of structures. In particu-
lar this splitting is rational (and indeed definable integrally) for the “de
Rham” rational structure on the operad FLD (the de Rham structure on
the complex C∗(FLD) as well as on C∗(LD) is part of a larger known de-
rived mixed Hodge structure on these dg operads: see for exampe [12] for
a definition in terms of the Grothendieck-Teichmüller group, or [55] for a
log algebro-geometric definition.) No explicit splitting that has previously
been constructed was known to be rational in any lattice, though rational
splittings have been known to exist by certain standard lifting theorems.
Our rationality implies compatibility of this formality quasiisomorphism
with the theory of derived vertex algebras with rational coefficients, and
(via results of Vallette and Drummond-Cole) with rational structure on
the genus 0 Deligne-Mumford-Knutsen operad. In the upcoming paper
[53], the author shows that this formality isomorphism has an interesting
and new deformation in the presence of monoidal structure determined
by an associator.

1.1 Relation to previous work

A formality splitting for the operad of little disks was first proven to
exist by Dmitry Tamarkin using path integral ideas of Kontsevich in [51],
then using Drinfeld associators in [50]. Tamarkin’s proof was extended
to the operad of framed little disks independently by Giansiracusa and
Salvatore in [20] and by Severa in [45]. A differently flavored proof, using
Grothendieck-Teichmüller action, was given in [11]. A splitting equivalent
to the one constructed here was sketched out in an unpublished short letter
of Beilinson to Kontsevich, [3], and it would not be wrong to say that the
present paper is a formalization of an idea of Beilinson.
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1.2 Idea of proof and structure of paper

For convenience we construct the formality quasiisomorphism in a dual
context, i.e., for the cooperad C∗(FLD,C) of Čech1 cochains instead of
chains. Formality occurs most naturally in the log de Rham context,

H∗(FLD,C)→ C∗dR(FLDlog)

for FLDlog our log algebro-geometric model for framed little disks. Here
the formality follows from the following two observations, each of which
follow from the remarkable proper acyclicity property of the log spaces
FLDlog

n :

1. For each n, the log space of operations FLDlog
n satisfies

HpΩq(FLDn) ∼=

{
Hq(FLDn,C), p = 0

0, p ≥ 1.
.

2. The de Rham differentials d : H0Ωq → H0Ωq+1 are zero.

In other words, the Hodge to de Rham spectral sequence degenerates at
the E1 term and only has one row. This immediately implies formal-
ity of the cooperad C∗dR(FLDlog). We then compare C∗dR(FLDlog) with
C∗Čech(FLD,C) (de Rham cohomology makes sense since FLD is an op-
erad of smooth manifolds with boundary) by a topological argument: the
so-called “Kato-Nakayama” topological realization of FLDlog is equiva-
lent to FLD via a standard chain of quasiisomorphisms.

1.3 Acknowledgments

Much of the log geometry in this paper was learned in discussions with
Clemens Koppensteiner and Mattia Talpo. Some of the weight filtration
techniques in Section 3.3 were explained to the author by Joana Cirici.
The idea for giving the explicit definition of the log composition mor-
phisms in section 2.2 was suggested an anonymous reviewer of the paper
[55], to whom the author is indebted. A number of discussions were in-
strumental for the gestation of this paper, and the author would like to in
particular thank Pavel Etingof, Akhil Mathew, Agust́ı Roig and Dmitry
Tamarkin.

2 Logarithmic geometry and the operad
of framed little disks

2.1 The category of logarithmic schemes

See [39] for an in-depth development of Kato’s logarithmic geometry, and
[47] for an informal introduction; we give a minimalistic picture of the

1We use Čech cochains for the standard topology to work with cohomology on complex
level. This gives better functoriality properties and can be compared more clearly to the de
Rham theory.
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relevant theory here. We work over a characteristic-zero field k. Given a
scheme X, a log structure on X is an étale sheaf of monoidsM/X with a
certain multiplicative relationship to the sheaf of functions OX . Schemes
with log structure form a category LogSch with behavior analogous to the
category of schemes. In particular, ifX is an algebraic variety then one can
turn it into a log scheme by taking “trivial log structure” on X (which we
will abusively still denote X ∈ LogSch); this realizes the category Sch of
schemes as a full subcategory of the category of log schemes. In the other
direction, we can define a functor taking a log scheme X corresponding
to a log structure on the scheme X to the underlying space,

X 7→ X̊ := X.

The forgetful functor X 7→ X̊ : LogSch → Sch is left adjoint to the
canonical embedding of Sch in LogSch, with unit of the adjunction given
by natural transformation

πX : X → X̊

for X ∈ LogSch, which we call projection to the underlying scheme.

Remark 1. All log schemes we work with will be fine and saturated.
Moreover, they will be of normal-crossings type.

Remark 2. There is an additional enrichment of the category of log
schemes called the category of idealized log schemes, see e.g. [39] I.1.3,
consisting of log schemes with a choice of sheaf of ideal monoids I ⊂ M
(closed under multiplication by M). We will treat every log scheme X we
work with as an idealized log scheme with a tautological idealized struc-
ture,

Xid = (X ,M, Itaut).

Namely to a log scheme X with sheaf of log monoidsM over an underlying
scheme X, we associate tautologically the maximal ideal

Itaut :=M\O×X .

We say that a log scheme X is idealized smooth if Xid is smooth (in the
sense of [39]) as an idealized log scheme.

We now give a suite of definitions and results which will provide suf-
ficient background on log schemes of normal-crossings type to explicitly
define and work with our operad FLDlog. Proofs of all of these statements
can be found in [39].

1. Given a smooth scheme X together with a normal-crossings divisor
D ⊂ X, there is a log scheme (X,D)log with underlying space X.
This log scheme is idealized smooth (indeed, it is also smooth in a
non-idealized sense).

2. To a log algebraic variety X with underlying scheme X (resp., a map
of log schemes X → Y), we can associate a bundle

ΩX
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over X of log differentials (resp., ΩX/Y of relative log differentials).
We define

ΩkX := Λk/OX
Ω,

in particular Ω0
X = OX . For X = X (trivial log structure), ΩX = ΩX .

For a log scheme of type X = (X,D)log, we have ΩX = ΩX(D, log),
the bundle of rational differentials generated locally by dlog f for f
functions with no zeroes or poles outside D.

3. We define the log tangent bundle TX := Ω∨X to be dual to the cotan-
gent bundle.

4. There is a differential d : ΩkX → Ωk+1
X which is a map of sheaves

of vector spaces over X (similarly to the non-logarithmic context).
The de Rham cohomology

H∗dR(X )

of a log scheme X is defined as the hypercohomology of the complex
of sheaves (Ω∗X , d) on X.

5. To a scheme X and a line bundle L on X one associates a log scheme
(X,L)log with underlying scheme X, with monoid M(X,L) given by
all homogeneous functions on the total space of L. For X = pt, L =
Opt the trivial line bundle, we define the “log point”

ptlog := (pt,O)log.

Schemes of the form (X,L)log (for X smooth) are smooth in an
idealized sense (see remark ??). Moreover the projection to the
underlying scheme (X,L)log → X is a log smooth map in an idealized
sense.

6. Ω(X,L)log is the sheaf whose sections over U ⊂ X are Gm-equivariant
differentials of the Gm-torsor GL on U given by removing the zero
section of L.

7. There is a useful intuition for the log scheme (X,L)log, which has a
geometric correlate in terms of Kato-Nakayama spaces (introduced
in the next section). Namely, (X,L)log can be thought of as a “zeroth
order logarithmic neighborhood” of the zero section in the total space
of L. Indeed, functions on (X,L)log are simply functions on X, while
one-forms on (X,L)log are locally generated by restrictions to the
zero-section X ⊂ L of regular one-forms on L (i.e., one-forms on
X) and “residue terms” of singular one-forms on L with first order
singularity along the zero section.

8. Log schemes have a notion of base change which is compatible with
base change of underlying schemes, and base change with respect to
an idealized smooth map preserves idealized smoothness and induces
a pullback diagram of sheaves of (pulled back) log tangent bundles
in a standard sense.

9. In particular, given a smooth scheme X with a collection of line
bundles L1, L2, . . . , Ld, write L := (L1, L2, . . . , Ld) for the tuple of
bundles (this is given by the same data as a Gdm-principal bundle
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on X). We define (X,L)log for the iterated fiber product of the
(X,Li)log over X. This is an idealized smooth log scheme, and its
projection to the underlying space X is idealized smooth with fibers
ptdlog.

10. More generally given a smooth schemeX with a tuple L = (L1, . . . , Ld)
of line bundles as above and a normal-crossings divisor D ⊂ X, write

(X,D,L) := (X,L)log ×X (X,D)log.

This is the base change of the smooth log scheme (X,D)log under
an idealized smooth map, hence is idealized smooth.

11. Schemes étale locally of the type (X,D,L)log as above are called
log schemes of normal-crossings type. Schemes Zariski locally of the
type (X,D,L)log with D ⊂ X a strict normal-crossings divisor are
called of strict normal crossings type. All log schemes we deal with
will be of strict normal-crossings type.

12. To an idealized smooth log scheme X , one associates two numbers:
the log dimension, defined as the rank of the log tangent bundle
ΩX and the geometric dimension, defined as the dimension of the
underlying scheme X. There is also a log fiber dimension, defined
as the difference of the two. The scheme (X,D,L)log has geometric
dimension n and log dimension n + d, where n = dim(X) and d is
the number of line bundles in the tuple L.

13. Given two log schemes X ,X ′ both with underlying scheme X, we
say that a map of log structures is a map X → X ′ over the identity
map of underlying schemes.

14. Given a map of schemes f : X → Y and a log structure Y on Y , there
is a “pullback log structure” f∗(Y) with underlying scheme X and
canonical map f∗(Y)→ Y. Any map X → Y with map of underlying
schemes f factors uniquely through this map as X → f∗Y → Y, with
the map X → f∗Y a map of log structures.

15. Assume X = (X,D,L) and X ′ = (X,D′, L′) are two normal-crossings
log structure with the same underlying scheme X. Then a map of
log structures

X → X ′

is classified by the following data.

MapsX(X ,X ′) =

{
∅, D′ * D

{α : AL→ AL′ | α homogeneous}, D′ ⊆ D.

Here AL is the total space of the vector bundle L1 ⊕ · · · ⊕ Ld
and a map between two such bundles is homogeneous if elements
of pure degree (m1,m2, . . . ,md) map to elements of pure degree
(m′1,m

′
2 . . . ,m

′
d′), equivalently if it is torus-equivariant with respect

to a map of tori Gdm → Gd
′
m. For example the set of maps of log struc-

tures between ptdlog and ptd
′

log is in bijection with d×d′ matrices with
positive integer coefficients (here matrices with integer coefficients

classify torus maps Gdm → Gd
′
m and the positivity condition ensures

that they extend to the partial compactification Ad → Ad
′
).
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16. Suppose X is a scheme with D a strict normal-crossings divisor and

L = (L1, . . . , Ld) a tuple of line bundles. Suppose that Y := D
k
α is a

closed normal-crossings stratification component of dimension k and
codimension c = n− k. Let

ι : Y → X

be the closed embedding of this stratum. Then then there are c dis-

tinct codimension-one closed strata D
n−1
1 , . . . , D

n−1
c which contain

Y, and we have a canonical identity relating normal bundles

NXY ∼=
c⊕
i=1

Ni,

for
Ni := ι∗YNXD

n−1
i .

Let DY be the union of all normal-crossings strata contained in
Y of higher codimension. Then we have the following canonical
isomorphism:

ι∗Y
(
(X,D,L)log

) ∼= (Y,DY , (L1, L2, . . . , Ld, N1, N2, . . . , Nd)
)
.

Note that this immediately permits us to classify maps between strict
normal-crossings schemes, so long as they lie over the embedding of a
normal-crossing stratum. This will be the case for the maps defining
our operad structure on FLDlog.

2.2 The operad of log framed little disks

We can now define the operad of log framed little disks in terms of the
minimalistic sketch of log geometry of the previous section. Note that
our definition here is equivalent to the less explicit moduli-theoretic def-
inition of the (reduced) operad FLDlog in [55]. Recall that an operad
O in a category C with symmetric monoidal structure × is a collection
of “space of operations” objects On ∈ C together with composition maps
compi : On × Om → Om+n−1 for 1 ≤ i ≤ n, and symmetric group ac-
tions Σn y On, satisfying certain compatibilities. In the presence of
a covariant functor of points S : C → Sets, the sets S(On) represent
n → 1 operations in an algebra structure, and the composition map
compi : (om, on) 7→ on compi om represents the operation obtained by
plugging in the output of om as the ith input of on (keeping all inputs of
om and the n−1 remaining inputs of on free), and the Σn action produces
new operations from old ones by permuting the inputs.

Remark 3 (A note about identity operations). In this text we will prove
formality for non-unital operads, as the formality property for a unital
operad follows from formality for the corresponding non-unital operad:
see for example [43]. In particular our model FLDlog will be non-unital
(though it can be made unital, see [55]). Nevertheless after taking chains,
all our quasiisomorphisms are compatible with appropriate unital struc-
ture, and we leave it as an exercise for the interested reader to check this
compatibility.
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In particular, in order to define a log operad FLDlog in the category
of log schemes, we need to define log spaces FLDn of n-ary operations,
the composition maps compi : FLDm × FLDn → FLDm+n−1 and per-
mutation actions Σn y FLDlog

n .
We begin by reminding the reader about a closely related operad in

the category of (ordinary) algebraic varieties, which we call the Deligne-
Mumford-Knudson (DMK) operad. Namely, define for n ≥ 2,

DMKn :=M0,n+1,

the moduli space of stable genus zero nodal curves with n + 1 marked
points labeled x0, x1, . . . , xn. We think of the point x0 as representing the
output, and all x≥1 as inputs. There is an obvious action of the symmetric
group Σn permuting inputs and we define composition morphisms

compi :M0,m+1 ×M0,n+1

as maps of moduli representing the geometric gluing construction

(X,x0, . . . , xm+1) compi(X
′, x′0, . . . , xn+1) : ∼=(

X tX ′

(x′0 ∼ xi)
, x0, x1 . . . , xi−1, x

′
1, . . . , x

′
m, xi+1, . . . , xn

)
(here as stable genus zero curves have no automorphisms, the isomorphism
assignment uniquely defines the map).

Checking these conditions on DMK≥2 satisfy the operad axioms is
equivalent to checking that (up to isomorphism), the composite glueing
XtY tZ
x∼y,y′∼z along disjoint pairs of points is independent of the order of spaces
glued, a tautology. We formally extend the operad structure on DMK≥2

above to a unital operad by defining

DMK1 := pt .

It is helpful to think of the point in DMK1 as classifying a “fully col-
lapsed” genus 0 curve with a single “node” point and no 1-dimensional
components, and with marked input and output (which happen to coin-
cide in this case).

Now we define FLDlog to be a log operad on top of the operad DMK.
Namely, let Dn ⊂ DMKn be the normal-crossings divisor classifying all
strictly nodal curves in M0,n+1. Let

Dm,m′ := comp1(DMKm ×DMK′m) ⊂ DMKn

be the image of the first composition map from DMKm × DMKm′ for
m + m′ = n + 1. Let Lk = T ∗k (for k = 0, . . . , n) be the line bundle over
DMK classifying the cotangent line to the marked point xk. We have the
following crucial lemma.

Lemma 1. 1. comp1 : DMKm×DMKm′ → DMKn is an embedding
of a closed normal-crossings component.

2. D = ∪σ(Dm,m′) for σ ∈ Σn ranging over (m′,m− 1) shuffles.

3. comp∗i NDMKn(D) is canonically isomorphic to the tensor product
line bundle L∗i � L

∗
0 on DMKm ×DMKm′ .
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Proof. Parts 1 and 2 are equivalent to the well-known fact that the normal-
crossings boundaryM0,n \M0,n consists of a union of moduli spaces clas-
sifying genus-zero curves that have a node that splits the set of marked
points via a fixed bipartite partition. See for example Section 2.5.1 of [10]
for 3.

Now we are ready to define the operad FLDlog.

Definition 1. Define

FLDlog
n := (DMKn, Dn, L)

for L = (L0, L1, . . . , Ln) the tuple of cotangent bundles at all the marked
points. Define Σn-action by permuting the marked input points x1, . . . , xn
and the corresponding line bundles L1, . . . , Ln. Define gluing maps compFLDi :
FLDlog

m × FLDlog
n → FLDlog

m+n−1 as the composition

FLDlog
m × FLDlog

n (compDMK
i )∗DMKm+n−1 DMKm+n−1,

αm,n ιm,n

where ιm,n above is the universal map from the pullback log structure, and
α is a map between log structures to be defined below. Observe that we
have via the canonical identification (see ??)

(compDMK
i )∗DMKm+n−1

∼=(
DMKm ×DMKn, D,

(
comp∗i (L1), . . . , comp∗i (Lm+n−1), NDMKm+n−1 compi

)
log

)
.

Now observe that each (compDMK
i )∗(Lk) is a bundle on M0,n+1 ×

M0,m+1 which for each pair of curves (X,X ′) classifies the tangent line

at a marked point of the glued curve X×X′
x′i∼x0

, equivalently the tangent line

at either some xj or x′j , depending on k. The explicit matching doesn’t
matter very much, but explicitly we have

comp∗i (Lk) ∼=


Lk �OM0,m+1, k < i

OMn+1,0 � Lk−i+1, i ≤ k ≤ i+m− 1

Lk−m+1, i ≥ i+m.

Observe also that the pulled back normal line bundle to the “i-composition
divisor” NDMKm+n−1 compi onM0,n+1×M0,m+1 is Ti�T0

∼= Li�L0, the
tensor product of the tangent bundles at the two glued points. Therefore
if j 6= i indexes a marked points of the curve X and k 6= 0 a marked
point of X ′, we can define the (homogeneous) map α from each Li�O to
comp∗i (L0,m+n−1) by sending the corresponding summand isomorphically
to the corresponding tangent line of the glued curve. It remains to define
a map on the total space of Li � O ⊕ O � L0 to the pulled back normal
bundle NDMKm+n−1 compi

∼= Li �L0. We define this to be the quadratic
multiplication map from the two-dimensional affine bundle ALi�O⊕O�
L0 to the tensor product of the two coordinates Li � L0.

Note that we assumed that n ≥ 2 in the above. We define

FLDlog
1 := ptlog .
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(The log point, equivalently (pt, k)log.) We define the 1→ 1 operad com-
positions structure (equivalently, monoid structure) on FLDlog

1 as that
induced from multiplicative monoid structure on k (this is the standard
monoidal structure on ptlog). To define action maps compi : FLDn ×
ptlog → FLDn and comp0 : ptlog×FLDn → FLDn we need to specity

an equivariant action of (A1, ·) on the affine space L0 × · · · × Ln; we
do this by having A1 act linearly on the corresponding factor Li (with
i ∈ {1, 2, . . . , n} for right action and i = 0 for left action of FLDn).

To check that this defines an operad structure, one must verify several
standard relations, chief among them the associativity relation on a pair of
operations of type compi . This is a somewhat laborious definition check;
alternatively, it can be deduced by observing that our explicit construction
coincides with the moduli-theoretic operad composition operations in [55].

2.3 Forgetful maps and FLDlog
1

If X is a stable curve with marked points indexed by a finite set Γ and
Γ′ ⊂ Γ is a subset of order ≥ 3, the curve XΓ′ is defined as the curve
obtained from X by forgetting all points not in Γ′ and contracting all
unstable components. This induces “forgetful” maps forgΓ,Γ′ : M0,n →
M0,n′ for n ≥ n′ ≥ 3. This map is compatible with normal-crossings
structure, and it is straightforward to lift this map to a canonical map
FLDlog

n−1 → FLDlog
n′−1 for n ≥ n′ ≥ 3. Though we will not use this until

section 4, it will be convenient for us to extend this to n ≥ 2, i.e., define
maps

forg[n],{i} : FLDlog
n → FLDlog

1 (= ptlog)

(which we will also call θlogi ) corresponding to “forgetting all inputs except
the ith input”. A convenient way to do so is as follows: let j :M0,n+1 →
M0,2(n+1) be the map that takes a curve and glues a curve with three
labels to each point. Then (by comparing normal bundles) we see that
FLDlog

n for n ≥ 2 canonically fits into the following pullback diagram,
with Mlog

0,n+1 the space (M0,n+1, D0,n+1)log:

FLDlog
n Mlog

0,2(n+1)

M0,n+1 M0,2(n+1).

j

π π

j

Here in the moduli problem of M0,2(n+1) one should label the marked
points x0, . . . , xn, y0, . . . , yn and the image of M0,n+1 under j is the set
of curves where each pair xi, yi are on their own nodal component with
only one node.

Now the forgetful maps forg : FLDlog
n → FLDlog

n′ are the induced
maps on pullback log schemes for the following map of triples of forgetful
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maps

Mlog
0,2(n+1)

M0,n+1 M0,2(n+1) Mlog
0,2(n′+1)

M0,n′+1 M0,2(n′+1).

π

j

π

j

We note that the space FLDlog
1
∼= ptlog fits into the diagram

FLDlog1 Mlog
0,4

pt M0,4,

j

π π

j

Here we label the points of M0,4 by xi, yi for 0 ≤ i ≤ 1, and the point
j(pt) is the unique nodal curve with x0, y0 on one nodal component and
x1, y1 on the other. We can now define forgetful maps

θlogi : FLDlog
n → FLDlog

1

as the induced maps on pullbacks for the diagram

Mlog
0,2(n+1)

M0,n+1 M0,2(n+1) Mlog
0,4

pt M0,4,

π

j

π

j

where the forgetful map M0,2(n+1) → M0,4 forgets all indices xk, yk for
k not in {0, i}. Note that this gives additional meaning to the notion that
one should considerM0,2 to be a single point, classifying the “single node”
curve (with dual graph the “open edge” graph).

Remark 4. In fact, the structure of FLDlog
n together with all forgetful

maps is equivalent to an extension of the operad FLDlog to an operad
FLDlog,+ with 0→ 1 operations classified by pt; “forgetting” an index is
then the operation of “gluing” the point of FLDlog,+

0 at that index. We
will not use this fact here.

3 De Rham cohomology and Hodge the-
ory

We review here the topological and analytic aspects of logarithmic geom-
etry over C, focusing on de Rham cohomology and Hodge-de Rham com-
parison. We take in this section k = C and study the category LogSchk
of C-log schemes.
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3.1 Kato-Nakayama spaces, the de Rham com-
parison and acyclicity

There is a category AnLog of complex analytic spaces with log structure,
and an analytification functor

X 7→ X an

from log schemes over C to log analytic schemes, extending the functor
X 7→ Xan from schemes with trivial log structure to analytic schemes
with trivial log structure. Log schemes also have a wonderfully behaved
topological realization (discovered by Kato and Nakayama), but unlike the
case of ordinary schemes, this is not equivalent to the analytic realizqation,
i.e., the “underlying topological space” of a log scheme is not provided by
the C-points with analytic topology: rather, this has to be modified to
take into account the logarithmic structure.

The “correct” topological realization functor

X 7→ X top : LogSch→ Top

is defined as
X top := X (ptKN )

with ptKN the “Kato-Nakayama point”, a certain nontrivial log structure
on Spec(C). (Note that this structure is very different from the “log
point” structure, ptlog, which is defined over any base field.) The Kato-
Nakayama point carries a certain analytic structure which gives X top the
structure of, first, a topological space and second, a locally ringed space.
When X = X has trivial log structure, we have naturally

X top ∼= X an

as locally ringed topological spaces, but for general log schemes X an might
not be analytic, and indeed might have odd (real) dimension. For a scheme
of type (X,D)log, its analytification is the real blow-up

BlD(X(C))

of the divisor D(C) ⊂ X(C). This is a real 2n-dimensional manifold with
corners (for n = dim(X)) whose interior is canonically an n-dimensional
complex analytic manifold, namely (X \ D)(C). Note that in this case
the map of topological spaces U top → X top is a homotopy equivalence,
for U = X \ D the locus of trivial log structure on X . The topological
realization of the log point is the unit circle,

(ptlog)
top ∼= S1.

There is a theory of GAGA (Géométrie Algébrique-Géométrie Ana-
lytique, after Serre [44]) comparisons of invariants for a log scheme X
which is richer than for non-logarithmic schemes, as it involves compar-
isons of invariants for not two but three objects X , X an and X top with
their accompanying local ringed and logarithmic structures. The relevant
comparison in our case is the pair of isomorphisms

H∗dR(X ) ∼= H∗dR(X an)
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and
H∗dR(X an) ∼= H∗Čech(X top,C)

which hold for any idealized smooth log scheme X over C. We will in fact
use a refinement of these homology isomorphisms to chain level, which is
easier to state for schemes with a nice acyclicity property.

Definition 2. We say that a log scheme X is acyclic if the sheaves Ωk(X )
are acyclic for all k, i.e., H≥1(Ωk(X ), X) = 0.

For example any log scheme with affine underlying scheme is acyclic
(since coherent sheaves have no higher cohomology), meaning that any
log scheme has an acyclic Zariski cover. The complex of de Rham chains
is easiest to write down for X acyclic, where we simply write

C∗dR(X ) :=
(
H0Ω∗(X ), d

)
.

This definition then extends to a DG functor on non-acyclic sheaves by
gluing (it is canonical in an ∞-categorical sense, though can be made
directly functorial by choosing covers in a universal way). We will only
need the acyclic statement here.

Theorem 2. Let X be an acyclic idealized smooth log scheme with under-
lying space X. Then there is a sequence of symmetric monoidal functors
from with symmetric monoidal quasiisomorphisms between the functor of
Čech cochains C∗(X top) and C∗dR(X ), viewed as functors from acyclic log
spaces.

Proof. This essentially follows from results in [39]. See the Appendix ??
for more details. Note that the acyclicity condition is not needed if the
functor C∗dR is defined in an appropriate hypercohomology sense.

3.2 Hodge to de Rham and proper acyclicity

Like in the classical case of smooth schemes, the hypercohomology inter-
pretation of H∗dR implies a Hodge to de Rham spectral sequence with E1
term

Hp(X,ΩqX/X) =⇒ H∗dR(X ).

Also analogously to the classical case, this spectral sequence degenerates
when X is smooth and proper [27] (see also [23])2 This spectral sequence
is associated to a chain-level Hodge filtration on C∗(X ). In the previous
section we defined a log scheme to be acyclic if H≥1ΩkX = 0 for all k.
The main new input into our formality splitting is the acyclicity property.
Note that an n-dimensional smooth and proper variety with trivial log
structure has a dualizing class in HnΩnX , and hence cannot be acyclic
unless n = 0. However a nontrivial log variety can be both acyclic and

2In fact this degeneration also holds when X is idealized smooth with underlying scheme
X proper. As the author could not find a reference for this more general fact in the literature,
we will deduce a statement of this type by converting an idealized smooth scheme into a log
smooth scheme with the same Hodge structure (something that is always possible using toric
geometry).
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proper (we say that a log scheme is proper if its underlying scheme is
proper). A key example is the smooth and proper log scheme

X = (P1, D)log

for D a divisor with d ≥ 1 points. Here acyclicity is elementary: indeed,
the sheaf of functions Ω0 does not depend on log structure giving Ω0

X/X =

OP1 , which is acyclic, and Ω1
X/X = Ω1

P1(D) ∼= O(d−2) is also acyclic. Note
that log smoothness is not required for proper acyclicity: for example, the
log point ptlog is trivially proper acyclic.

Let
PALog

be the category of proper acyclic log schemes (a full subcategory of LogSch).
Hodge to de Rham degeneration implies the following theorem (see also
??.)

Theorem 3. Over a field k of characteristic 0, there is a canonical for-
mality natural quasiisomorphism Ω : H∗ → C∗dR between the two functors
PALog → dgVect (for dgVect the category of complexes). Moreover, Ω is
compatible with (lax) symmetric monoidal structure.

Proof. By our definition, C∗dR is defined for acyclic sheaves as the complex
(H0ΩkX , ddR). Hodge-to-de Rham degeneration for proper schemes implies
that ddR = 0 for each X ∈ PALog. Thus the functor C∗dR as a (lax)
symmetric monoidal functor from PALog to the category of complexes
factors through the subcategory of complexes with zero differential (and
is in fact strict symmetric monoidal).

Functoriality and symmetric monoidicity of this natural transforma-
tion implies that any “algebraic co-structure” on de Rham cochains associ-
ated to an algebraic structure on proper acyclic spaces is itself canonically
proper. In particular we have the following corollary.

Corollary 4. Suppose O is an operad in PALog. Then the co-operad
C∗Čech(OKN ,C) is related by a canonical sequence of natural quasiisomor-
phisms of cooperads to H∗(OKN ,C).

Proof. We combine Theorem 3 with Theorem 2.

3.3 Proper acyclicity of FLDlog

In order to prove formality of framed little disks it remains to prove the
following theorem.

Theorem 5. The spaces FLDlog
n are proper acyclic.

Proof. As the underlying scheme of FLDlog
n is M0,n+1 (or pt for n = 1),

properness is automatic. It remains to demonstrate acyclicity of Ωklog. We
give a proof using Hodge theory, using interactions between the Hodge and
weight filtrations (we note that more explicit proofs of this computation in
the cohomology of coherent sheaves are possible. See also section 3 of [18]
for a related computation). We say that a (smooth but not necessarily
proper) algebraic variety X (with trivial log structure) is 2-pure if the
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associated graded GrkW (H∗(X,C)) is purely in cohomological degree k
2

(and in particular, is trivial for k odd). The quintessential example is
X = Gm, which has H1(Gm) = C(1) the Tate Hodge module, pure of
weight 2. In fact all 2-pure varieties can be seen to be of Tate type. (Note
that a smooth variety X is “1-pure”, i.e., one can drop the factor 1

2
in the

comparison between the homological and weight gradings, if and only if
X is proper.)

We begin by proving that a (non-idealized) proper smooth log variety
that compactifies a 2-pure variety is proper acyclic.

Remark 5. In fact, it is possible to extend this statement to idealized
smooth log varieties, though we do not need the full generality here. Namely,
there is a way to associate motives more generally to log varieties (ex-
plained for example in upcoming work of Vologodsky et al, [56]), and it is
possible to show that an idealized log variety is proper acyclic if and only
it is proper and its motive is 2-pure.

Lemma 6. Suppose that U is a 2-pure smooth algebraic variety over C
and X is a normal-crossings compactification of U with D = X \U . Then

X := (X,D)log

is acyclic.

Proof. There is a weight spectral sequence for H∗(X ) built out of the
cohomology groups of X and the closed strata of D, with E1 term as
follows:

. . .
...

...
...

. . . H0(D2) H2(D1) H4(X)

. . . 0 H1(D1) H3(X)

. . . 0 H0(D1) H2(X)

. . . 0 0 H1(X)

. . . 0 0 H0(X),

d1 d1

d1

d1

for Dk := tD̃n−k
i is the disjoint union of normalizations of irreducible

components of closed codimension-k strata of D, and with differential d1

a Gisin differential. The weight filtration splits on the E1 term, with
Ep,q1 = Hp−2q(Dp) in weight p; so 2-purity is equivalent to vanishing of
all terms except on the E∞ page except E2p,p

∞ (note that the spectral
sequence degenerates at the E2 page, hence the vanishing is also true
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on E2). The weight filtration is compatible with the Hodge filtration
on columns, with F pHodge(D

q) concentrated in H≥p. Thus 2-purity im-

plies that F≥1
Hodge = 0, i.e., the Hodge filtration is concentrated in degree

0. Now the associated graded GrpHodge(U) is computed by the complex
(Hp(Ω∗U ), ddR), which can be computed on in terms of log forms in a
normal-crossings compactification. Hodge-to-de Rham degneration then
guarantees that H≥1Ω∗(X,D)log = 0.

The relevant advantage of the weight filtration over the Hodge filtra-
tion in our case is its good behavior in families. In particular the weight
filtration behaves “flatly” in families, and we have the following lemma.

Lemma 7. Suppose π : E → B is a smooth family of schemes over a
smooth base B (over C). Suppose that B is 2-pure and a fiber F ⊂ E over
some point of B is 2-pure. Then E is 2-pure.

Proof. This follows from appropriate compatibility of weight filtrations
with the Serre spectral sequence.

Corollary 8. The spaces M0,n are 2-pure.

Proof. Indeed, M0,3 = pt is pure acyclic and there is a smooth fibration
M0,n+1 →M0,n with fibers isomorphic to n times punctured P1 (which
is 2-pure as H1(P1 \ D) ∼= Cd−1(1), for D a collection of d ≥ 3 distinct
points), whose H1 motive is isomorphic to C(1)d−1, of weight 2.

This implies that the moduli space of marked genus zero log curves
(M0,n, D)log is proper acyclic. To deduce a result for FLDlog

n = (M0,n+1, D, L)log
we need to deal with the additional line bundles L1, . . . , Ln. Define the
smooth log variety

P(M0,n+1, L)

to be the (total space of the) (P1)n+1-bundle P(L1) × · · · × P(Ln) which
compactifies the total space of L0⊕· · ·⊕Ln. We introduce a log structure

P(M0,n+1, L)log =
(
P(M0,n+1, L)log,PD

)
,

where PD is the union of the preimage of D ⊂ M0,n+1 and the union of
the 0-section and the ∞-section of each P1-bundle. We have

ι : (M0,n+1, D, L)log ↪→ P(M0,n+1, L)log

embedded as the induced log structure on the simultaneous zero section
of all P1-bundles. Now note that the embedding ptlog ↪→ (P1, 0 t 1)log
embedded as the log structure at 0 induces an isomorphism on global
sections Ω∗ (with both spaces proper acyclic). Taking a tensor power,
we deduce the same for the embedding ptn+1

log ⊂ (P1, 0 t ∞)n+1
log , hence

arguing fiberwise we see that the map ι above induces an isomorphism
on each HpΩq, and in particular preserves the acyclicity property. Thus
it remains to prove that P(M0,n+1, L)log is pure acyclic. Since the open
scheme P(M0,n+1, L) \ PD is a Gn+1

1 -bundle over Mg,n we see that it is
2-pure by applying Lemma 7 to 8, hence done with Theorem 5.
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4 From framed little disks to little disks

The formality problem was first posed and first proven for the E2 operad,
equivalent to the operad LD of ordinary (i.e., not framed) little disks. The
operads LD and FLD are closely related: indeed, FLD is a semidirect
product of LD and S1. One aspect of this relationship is a fiber square of
operads of operads (defined below), as follows.

LD FLD

Comm CommS1

.

θ

i

(1)

Here Comm commutativity operad (the terminal object in the category
of operads), uniquely defined by Commn = pt for all n. It is so named
because the category of algebras over this operad (viewed as a unital
operad) is the category of commutative monoids. For any (not necessariy
commutative or unital) topological monoid G, there is a “G-equivariant
commutativity” operad CommG, with category of algebras equal to the
category of G-equivariant monoids. This operad is defined by CommG

n :=
Gn, with composition

(g1, . . . , gn)◦i(g′1, . . . , g′k) := (g1, . . . , gi−1, gig
′
1, gig

′
2, . . . , gig

′
k, gi+1, . . . , gn).

The map i : Comm → CommS1

is the map on operads induced by the
unique map of groups 1 : {e} → S1. Explicitly, it is defined by in(∗) =

(1, 1, . . . , 1) ∈ CommS1

n .
Recall that FLDn classifies the data of a collection of n noninter-

sectiong maps ι1, . . . , ιn from closed disks D2 to a single D2 which are
complex homotheties (i.e., compositions of a translation, scaling and ro-
tation). Given such a configuration, each map ιn rotates the disk by an

angle θlogn . Let θ : FLDn → CommS1

n be the map recording the angles,
(ι1, . . . , ιn) 7→ (θlog1 , . . . , θlogn ) ∈ (S1)n. This is a map of operads. This
defines the three lower right objects and maps of the square 1. Now the
operad LD ⊂ FLD has spaces of operations LDn ⊂ FLDn given by
tuples of nonoverlapping real homotheties ιn : D2 → D2, equivalently, el-
ements of FLD with “framing” angles θ1, . . . , θn = 0. For each n we thus
have LDn = θ−1(1, 1, . . . , 1) ⊂ FLDn, verifying the commutativity and
the pullback property of the diagram 1.

Note that each map FLDn → (S1)n is a Hurewicz (therefore also a
Serre) fibration, and so (since fibrancy for operads is inherited from spaces,
see [6]), the diagram 1 is a homotopy basechange diagram. We would like
to get Hodge splitting properties for the diagram LD by re-interpreting
this diagram in a logarithmic context, though there are some new com-
plications here as we shall see. First we observe that the right column

FLD → CommS1

has a logarithmic analog. Namely, recall (section 2.3)
that for i = 1, . . . , n, we have maps θlogi : FLDn → FLD1. The space
FLD1 = ptlog has the structure of a (non-unital) monoid in the category
of log schemes, hence induces an “equivariance” operad and the maps

θlog := (θ1, . . . , θn) : FLDlog
n → ptnlog
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combine to a map of operads FLDlog → Commptlog . A direct comparison
(see Appendix) shows that after K-N realization, this map of operads is
related (by a pair of quasiisomorphisms of maps of operads) to the map

of topological operads θ : FLDlog → CommS1

. We would like to draw
a diagram of log operads analogous to the lower right three entries of
1, and define an operad “FLDlog” as the pullback, but we run into a
problem. Namely, ptlog is non-unital and indeed, there is no map pt →
ptlog, hence the bottom row of the diagram cannot be interpreted in the
log category. In the paper [55], this problem is resolved by moving to
a more flexible motivic category; however in this paper we use a more
concrete solution, involving the de Rham complex of sheaves in the Kato-
Nakayama realization.

We begin by replacing this diagram with a quasiisomorphic one: namely,
let R(1) be the group isomorphic to R, but understood as the group of
purely imaginary complex numbers. The map exp : R → S1 induces a

map CommR → CommS1

. Define the operad L̃D to be the pullback of
the diagram

L̃D FLD

CommR CommS1

.

θ

ι

(Geometrically, a point of L̃Dn classifies a point of FLD together with a
homotopy class of paths in S1 from each of the angles θi to 1 ∈ S1.) The

map pt→ R induces the homotopy equivalence of operads LD → L̃D.
Now on the level of Čech cochains, the last diagram can be compared to

a diagram of logarithmic origin. Namely, recall that for X a logarithmic
variety, X top is a locally ringed space with ring of “log holomorphic”
functions Otop. The sheaf Otop =: Ω0

top is part of a complex

(Ω∗top(X ), d) := Ω0
top → Ω1

top → · · · → Ωn+d
top

(here n+d is the “log dimension”), which (assuming X is idealized smooth)
resolves the sheaf Ctop of locally constant functions on X top. For X =
ptlog, let us choose a basepoint

−→
1 ∈ pttoplog (the point of the exceptional

fiber of the real blowup of C in the direction of 1 ∈ C), and let p̃t
top

log be the
universal cover with respect to this basepoint, canonically isomorphic to

R(1). Then the complex Ω0(pttoplog ) → Ω1(pttoplog ) has a lift to p̃t
top

log , which
we denote

Ω0(p̃t
top

log )→ Ω1(p̃t
top

log ).

Since this complex resolves CR(1), its global sections are one-dimensional,

spanned by the unit global section 1 ∈ Ω0(p̃t
top

log ), and there is no higher
cohomology.

Remark 6. In fact, the complex of sheaves

Ω0(p̃t
top

log )→ Ω1(p̃t
top

log )

is quite simple. Ω0 is the constant sheaf with fiber the polynomial algebra
C[log] for log a variable (corresponding to the log function on the universal
cover of C∗) and Ω1 = dlog · C[log].
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Let
L̃D

log,top

be the covering of the Kato-Nakayama operad FLDlog,top which fits into
the pullback diagram

L̃D
log,top

FLDlog,top

Commp̃t
top
log Comm

pt
top
log .

θlog,top

ι

Define the complex of sheaves Ω∗(L̃D
log,top

n ) to be the pullback of the
complex of Kato-Nakayama log differential forms Ω∗(FLDlog,top

n ) on the
topological space FLDlog,top

n to its cover. Note that this complex once

again resolves the constant sheaf C on the topological space L̃D
log,top

n .

Remark 7. The operad L̃D
log,top

with the complex of logarithmic forms

Ω∗(L̃D
log,top

) is a natural “analytic geometry” home for the mixed Hodge
structure on the operad of chains C∗LD given by Tamarkin’s construction
[49] (see also [12]): in particular, both the Hodge and the weight filtra-
tion are clearly visible in this picture. Moreover, the complex of sheaves

Ω∗(L̃D
log,top

) has naturally a rational lattice (lifting the rational structure
on Ω∗(FLDlog)), giving naturally a de Rham lattice C∗dR(LD). It can be
checked that this is the same lattice as the one given in [55].

Applying the Čech cochains functor C∗ =: C∗Čech, we obtain the fol-
lowing diagram of cooperads in the category of cdga’s:

C∗(L̃D
log,top

,Ω∗log,top) C∗(FLDlog,top,Ω∗log,top)

C∗(Commp̃t
top
log ,Ω∗log,top) C∗(Comm

pt
top
log ,Ω∗log,top).

Since each Ω∗log,top is a resolution of a constant sheaf, and the diagram of
spaces is a fibration, we see that this is a homotopy pushforward diagram
in the category of cdga’s for each space of operations (therefore also a
homotopy pullback diagram in the category of co-operads of connective
cdga’s). Now consider the following diagram of triples of complexes.

C∗(Commp̃t
top
log ,C) C∗(Comm

pt
top
log ,C) C∗(FLDlog,top,C)

C∗(Commp̃t
top
log ,Ω∗log,top) C∗(Comm

pt
top
log ,Ω∗log,top) C∗(FLDlog,top,Ω∗log,top)

C H∗(CommS1

,C) H∗(FLD,C).

ι α β

The maps between the first and second row are given by the map of
complexes of sheaves C → Ω∗log,top which is a quasiisomorphism (by the
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de Rham resolution property stated above), the maps α, β between the
bottom two rows are the formality maps of Theorem ?? and ι is the
embedding of constant functions. This is easily seen to be a commutative
diagram with all vertical maps quasiisomorphisms. Now note that a triple
of connective cdga’s R′ ← R → R′′ is “pullback-exact”, i.e. satisfies the
property that

R R′

R′′ R′ ⊗R R′′

is a homotopy pushforward diagram, if either R → R′ or R → R′′ is
cofibrant in the Quillen model structure. For the top two rows, the map
on the left is cofibrant (since it is induced by pullback of sections for a
covering space), and for the bottom diagram, the map on the right is
cofibrant since the map of (ordinary) topological operads FLDn → (S1)n

is a fibration. Thus taking cdga pushout of each row gives a new triple
of quasiisomorphisms of operads of cdga’s, with the bottom pushout iso-
morphic to H∗(LD) and the top pushout mapping quasiisomorphically to

C∗(L̃D
log,top

) which is related by a pair of quasiisomorphisms of topolog-
ical operads to C∗(FLD).

5 Applications and extensions

Here we sketch out very briefly several applications and extensions of
the results of this paper and make some conjectures. Arguments in this
section are sketches rather than full proofs.

5.1 Integral splitting

Our spaces FLDlog
n , the composition maps ◦i and the Σn actions involved

in the operad structure are all defined and (idealized) smooth over Z. Let
A∗n be the complex

A∗n =
(
H0Ω0

Z(FLDlog
n )→ H0Ω1

Z(FLDlog
n )→ · · · → H0Ω2n−1(FLDlog

n )
)
.

Smoothness implies in particular that this is a complex of free Z-modules
which are submodules in the Q-basechange; our formality result over
k = Q then implies that the complexes A∗n are formal. By standard func-
toriality and symmetric monoidicity of H0 (for connective complexes), we
obtain a cooperad of graded spaces A∗, which is an integral lattice in
H∗(FLDlog). The “truncation” maps H0(Ωk) → C∗(Ωk) then define a
map of co-operads of Z-complexes

A∗ → C∗dR,Z(FLDlog).

Dualizing, we obtain a map of operads

CdR∗ (FLDlog,Z) :=
(
C∗dR(FLDlog,Z)

)∨ → (A∗)∨;

this implies that given any algebra over the formal Z operad (A∗)∨ one ob-
tains canonically an operad over the “integral de Rham chains” of FLDlog,
an integral version of de Rham splitting. It is natural to ask two questions.
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Question. Is the “formality map” A∗ → C∗dR,Z(FLDlog) a quasiisomor-
phism?

Question. Is the co-operad A∗ isomorphic (non-canonically) to the inte-
gral cohomology co-operad H∗(FLD), i.e., dual to the integral BV operad?

The results of this paper imply that both of these are true after ex-
tending coefficients to Q, but they may well have torsion obstructions
integrally. Note that, as C∗dR,Z(FLDlog) might not be quasiisomorphic
to C∗(FLD,Z) (though see the next question), both of these may be
true without implying that the topological chains operad C∗(FLD,Z) is
formal.

5.2 Prismatic cohomology

For a smooth and proper scheme X over Zp, there is a Prismatic cohomol-
ogy theory ([8], [7]) with complex of cochains C∗prism(X,Ainf ) with coeffi-
cients in Fontaine’s period ring Ainf which interpolates at different points
of Spec(Ainf ) between characteristic-p de Rham cohomology C∗

dR,Fp
(X)

and étale cohomology C∗ét(XQp
,Fp) (equivalent to Betti cohomology with

Fp-coefficients).

Question. Does there exist a Prismatic cohomology theory C∗prism(FLDlog
Zp

)
over Ainf which interpolates between étale and de Rham cohomology in
an analogous way?

This would follow from a sufficiently powerful logarithmic p-adic Hodge
theory for idealized smooth log varieties. Some steps towards such a
theory are taken by T. Koshikawa and K. Cesnavicius in [33] and [13]; see
also [54].

5.3 Comparison with other rational de Rham the-
ories

The canonical splittings for C∗(LD,C) and C∗(FLD,C) constructed here
are particularly interesting compared to previously known splittings, be-
cause they are the first explicitly constructed splittings which are compat-
ible with a rational structure on C∗(LD,C); namely, the de Rham rational
structure. This structure (or rather its dual, C∗dR) was first constructed
as part of a mixed Hodge structure in the paper [12], where it was ob-
served to follow from the Grothendieck-Teichmüller action discovered in
[49] (the corresponding action on the framed operad FLD follows from
[45]). Another, log geometric, interpretation for this rational structure
was given in [55]. We give here without proof two other places where the
rational lattice C∗dR(LD,Q) should appear in a canonical way.

5.3.1 FLD, homotopy pushout and moduli of nodal curves

In the paper [14] (see also [15]), Drummond-Cole shows that the topologi-
cal Deligne-Mumford-Knudson operadDMK (withDMKn =M0,n+1(C))
is homotopy equivalent to the “homotopy trivialization” of the sub-operad
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of 1→ 1 operations in FLD, i.e. to the homotopy pushout (in a standard
model structure on operads) of the diagram

S1 FLD

pt,

where in the left hand column for G a group (more generally, a monoid),
we interpret G as an operad by taking

Gn→1 :=

{
G, n = 1

∅, else.

This implies an analogous pushout diagram on the level of chains. Since
the operad DMK is algebro-geometric and defined over Q (indeed, also
over Z), there is an evident de Rham lattice CdR∗ (DMK) (dual to rational
de Rham cochains) in C∗(DMK,C). Techniques of [14] and [38] can be
extended to a log geometric context to show that CdR∗ (DMK,Q) in fact
fits in a canonical pushout diagram

CdR∗ (Gm,Q) CdR∗ (FLDlog,Q)

Q CdR∗ (DMK)

y

There is an explicit combinatorial computation of pushouts of derived op-
erads (using the Boardman-Vogt resolution), and this seems to be the first
explicit construction of a quasiisomorphism between CdR∗ (DMK) and an
explicitly constructed combinatorial operad. The dual of the resulting
quasiisomorphism is compatible with product structure, and it seems to
be a new result to give an explicit combinatorial dg model (i.e., quasiiso-
morphic via explicit maps) for the cdga’s C∗(M0,n+1,Q) which is directly
compatible with all boundary maps.

5.3.2 Derived vertex algebras

There is another algebro-geometric model for the chain operad of un-
framed little disks C∗(LD), via derived vertex algebras. Namely, via work
of Francis-Gaitsgory, [17] (extending work of Beilinson-Drinfeld, [4]), the
category of E2 dg algebras (equivalently, C∗(LD)-algebras) is equivalent
to the category of locally constant translation-equivariant (derived) fac-
torization algebras over the line (equivalently, locally constand derived
vertex algebras). We make the following conjecture.

Conjecture 1. There is a canonical equivalence of ∞-categories between
locally constant derived vertex algebras (as defined above) and representa-
tions of the operad CdR∗ (LD,Q).

The formality constructed here then implies a canonical equivalence of
∞-categories between locally constant derived factorization algebras and
rational dg Gerstenhaber algebras.

It would be very interesting to find an extension of such a result to
conformal vertex algebras (i.e., vertex operator algebras).
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