Math 113 Homework 6, due 3/7/2019

1. This is an important exercise, defining the group D_{n}.

Let $C_{n} \subset S_{n}$ be the subset consisting of the following permutations:

$$
\left\{\rho_{k}=(1,2,3, \ldots, n)^{k}, k=0, \ldots, n-1\right\}
$$

Here remember that $(1,2,3, \ldots, n)$ is the cyclic notation for the permutation

$$
\left(\begin{array}{ccccccc}
1, & 2, & 3, & \ldots, & n-2, & n-1, & n \\
2, & 3, & 4, & \ldots, & n-1, & n, & 1
\end{array}\right)
$$

(a) Show that C_{n} is a subgroup (hint: it's cyclic!)
(b) Show that, if each $1, \ldots, n$ is relabeled by its corresponding class in \mathbb{Z}_{n} (remember that $[n]=[0]$), then C_{n} consists of all functions of the type $\rho_{[k]}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ for $[k] \in \mathbb{Z}_{n}$, with

$$
\rho_{[k]}([x])=[k]+[x]
$$

defined to be the function that adds $[k]$ to any remainder modulo n.
(c) Let $\lambda \in S_{n}$ be the permutation given by $\lambda(k)=n+1-k$, so

$$
\lambda=\left(\begin{array}{ccccccc}
1, & 2, & 3, & \ldots, & n-2, & n-1, & n \\
n, & n-1, & n-2, & \ldots, & 3, & 2, & 1
\end{array}\right)
$$

in permutation notation.
Show that $\lambda^{2}=e$.
(d) Define $\lambda_{k}=\rho_{k-1} \circ \lambda$. Show that if the indices $1, \ldots, n$ are viewed as remainders modulo n then $\lambda_{[k]}([x])=[k]-[x]$.
(e) Give formulas for the four possible compositions, $\rho_{[k]} \circ \rho_{\left[k^{\prime}\right]}, \rho_{[k]} \circ \lambda_{\left[k^{\prime}\right]}, \lambda_{[k]} \circ \rho_{\left[k^{\prime}\right]}$ and $\lambda_{[k]} \circ \lambda_{\left[k^{\prime}\right]}$ (it is easier to do this by thinking of ρ 's and λ 's as functions on remainders, but computing these directly in S_{n} is also legitimate). Observe in particulat that $\lambda_{[k]}^{2}=e$ for any k.
(f) Deduce that the subset $D_{n} \subset S_{n}$ consisting of ρ_{k} and λ_{k} is a subgroup.

Note: D_{4} is another way to interpret the group in example 8.10 of symmetries of the square: keep in mind that in this example, the ρ_{k} are the same as our ρ_{k}, but what we call $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$, respectively, the book calls $\mu_{2}, \delta_{2}, \mu_{1}, \delta_{1}$, respectively (our notation is more consistent: to see what one of the λ 's is called, just apply it to the rightmost index, which in the case of D_{4} is 4).
2. Book exercises 6.17-6.19
3. Book exercise 6.32
4. Book exercise 6.44
5. Book exercises 8.1, 8.4, 8.5 (hint: to invert a permutation in permutation notation, just flip the top and bottom rows. So in the exercise

$$
\tau^{-1}=\left(\begin{array}{cccccc}
2 & 4 & 1 & 3 & 6 & 5 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right)
$$

You can then put it in more standard notation by rearranging the columns (which doesn't change what the function does), so

$$
\tau^{-1}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 4 & 2 & 6 & 5
\end{array}\right)
$$

6. Book exercises 10.1, 10.6, 10.7

Quiz Prep questions $10.2-10.4,10.20-10.24,10.25,10.26$

