
Math 113 Homework 5, due 2/26/2019

1. Say (G, ∗) is a group and H ⊆ (G, ∗) is a subset that is closed under the operation ∗. Then whether
or not H is a subgroup, we can see that (H, ∗) (operation inherited from G) is a valid binary structure.
Show that if this binary structure is a group, then H is a group in the sense described in class, namely:
eG ∈ H and if h ∈ H then h−1G ∈ H (you don’t have to check closure, since this is one of our assumptions
on the subset H). Hint: the group property of H implies there is an identity element a ∈ H. What is a ∗ a?
Remember that the operation a ∗ a doesn’t depend on whether a is understood as an element of H or of G.

(2.-11.) Define U ⊆ (C∗, ·) to be the “unit circle”, i.e. the subset z ∈ C∗ | |z| = 1. The following
problems will have to do with symmetries of the circle U given by rotations and reflections.
Don’t worry too much here about set-theoretic details and rigor: the idea is to do some
computations and get a geometric picture of what are the “symmetry” functions f : U → U
and how they compose.

2. Show that under multiplication, U is a subgroup of the multiplicative group C∗, ·.

3. Define the function e : R → U with e(r) := cos(r) + i · sin(r). Show that e does in fact take values
in U , and check that e satisfies the homomorphism property (where R is viewed as a group with additive
structure).

4. We say r ≡2π s if r − s is an integer multiple of 2π. Show that ≡2π is an equivalence relation and
that r ∼ r′, s ∼ s′ =⇒ r + s ∼ r + s′, so the addition operation [r] + [s] := [r + s] is well-defined. Once
well-definedness is checked, the group properties for R imply that R/ ≡2π with the addition operation on
classes given above is a group (once you check well-definedness you automatically get that it is a group with
identity [0] and [a]−1 = [−a], no need to prove this).

For future problems, write Rad := R/ ≡2π “the group of radians”: elements represent angles
in radian notation, so that for example [π] = [−π] = [3π] corresponds to the angle 180◦ and
[π/2] = [−3π/2] is 90◦. The operation + defined in problem 4 is “angle addition”.

5. Let’s define the function ϕ : Rad → U (where Rad := R/ ≡2π) by ϕ([r]) := e(r). (The symbol ϕ is
the greek letter Phi.) Show that ϕ is well-defined. Show that it is an isomorphism (hint: you may use the
homomorphism property of the function e.)

6. For θ ∈ Rad (defined in problem 4), define the function rotθ : U → U by rotθ(z) := ϕ(θ) · z. Check
that indeed, rotθ(z) ∈ U if z ∈ U. Check that, expressing z = x+ y · i, the operation rotθ rotates the point
(x, y) by θ degrees counterclockwise around the origin, i.e. applies the matrix(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

to the vector

(
x
y

)
.

7. Show that the composition rot[θ] ◦ rot[θ′] = rot[θ+θ′], where all are interpreted as functions from U to



itself. (Remember that two functions are the same if all their values are the same and don’t try to be fancy
or use matrices here.)

8. Define the function sθ : U → U by sθ(u) := ϕ(θ)
u (here “s” stands for symmetry: this is a reflection

function). Check that sθ(u) ∈ U if u ∈ U , so sθ makes sense as a function from U to itself.

9. As an example, draw the four points 1, i,−1,−i in U (corresponding to angles [0], [π/2], [π], [3π/2]).
Draw an arrow from each of these points z to rotπ/2(z) (no proof needed: note that rotπ/2(z) should once
again be one of these four points).

Repeat for rotπ, sπ/2, and sπ. Notice that sθ is always a reflection function (no proofs needed).

10. Here is how you can compute sθ ◦ sθ′ (composition for two different angles):

sθ ◦ sθ′(u) =
ϕ(θ)(
ϕ(θ′)
u

) = u · ϕ(θ)

ϕ(θ′)
= u · ϕ(θ − θ′) = rotθ(u).

This shows that sθ ◦sθ′ = rotθ−θ′ . Compute using a similar argument the compositions rotθ ◦sθ′ and sθ′ ◦rotθ
(warning: not abelian!). Together with the calculation for rotθ ◦ rotθ′ done above, deduce that composing
different functions of the form rotθ or sθ once again produces functions either of the form rotθ or sθ. In other
words, the combined set

SymU := {rotθ | θ ∈ Rad} ∪ {sθ | θ ∈ Rad}

of functions from U to itself is closed under composition. The set of functions SymU is the “set of (distance-
preserving) symmetries of the circle” U ⊆ C (any symmetry of a circle that doesn’t change distances between
points is a rotation or a reflection). This group is also called O(2), the group of orthogonal transformations
of a two-dimensional vector space.

11. Show that the set of functions SymU with operation ◦ (composition) is a group. You may assume
composition of functions is associative (so you do not need to prove the assosciativity axiom). Note: don’t
waste time showing these symmetry functions are bijective (and therefore invertible): the composition rules
you’ve found above will let you quickly find the inverse. Make sure to check, however, that the inverse you’re
defining is two-sided!

12. Extra credit: An element of a group g ∈ (G, ·) is “central” if g · x = x · g for any other x ∈ G.
Show that SymU has exactly two central elements, and they form a subgroup.
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