Math 113 Homework 5, due 2/26/2019

1. Say (G, «) is a group and H C (G, %) is a subset that is closed under the operation *. Then whether
or not H is a subgroup, we can see that (H,x*) (operation inherited from G) is a valid binary structure.
Show that if this binary structure is a group, then H is a group in the sense described in class, namely:
eqg € H and if h € H then h='¢ € H (you don’t have to check closure, since this is one of our assumptions
on the subset H). Hint: the group property of H implies there is an identity element ¢ € H. What is a * a?
Remember that the operation a * a doesn’t depend on whether a is understood as an element of H or of G.

(2.-11.) Define U C (C*,-) to be the “unit circle”, i.e. the subset z € C* | |z| = 1. The following
problems will have to do with symmetries of the circle U given by rotations and reflections.
Don’t worry too much here about set-theoretic details and rigor: the idea is to do some
computations and get a geometric picture of what are the “symmetry” functions f: U — U
and how they compose.

2. Show that under multiplication, U is a subgroup of the multiplicative group C*, -.

3. Define the function e : R — U with e(r) := cos(r) + 4 - sin(r). Show that e does in fact take values
in U, and check that e satisfies the homomorphism property (where R is viewed as a group with additive
structure).

4. We say r =9, s if r — s is an integer multiple of 2. Show that =5, is an equivalence relation and
that r ~ 1, s ~ ¢ = r+4+ s~ r+s, sothe addition operation [r] + [s] := [r + s] is well-defined. Once
well-definedness is checked, the group properties for R imply that R/ =5, with the addition operation on
classes given above is a group (once you check well-definedness you automatically get that it is a group with
identity [0] and [a]~! = [~a], no need to prove this).

For future problems, write Rad := R/ =, “the group of radians”: elements represent angles
in radian notation, so that for example [7] = [-7] = [37] corresponds to the angle 180° and
[7/2] = [-37/2] is 90°. The operation + defined in problem 4 is “angle addition”.

5. Let’s define the function ¢ : Rad — U (where Rad := R/ =a.) by ¢([r]) := e(r). (The symbol ¢ is
the greek letter Phi.) Show that ¢ is well-defined. Show that it is an isomorphism (hint: you may use the
homomorphism property of the function e.)

6. For § € Rad (defined in problem 4), define the function roty : U — U by rotg(z) := ¢(0) - z. Check
that indeed, roty(z) € U if z € U. Check that, expressing z = x + y - 4, the operation roty rotates the point
(z,y) by € degrees counterclockwise around the origin, i.e. applies the matrix
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to the vector (5) .

7. Show that the composition rotjg o rotjg:) = rotjg4.¢,), where all are interpreted as functions from U to



itself. (Remember that two functions are the same if all their values are the same and don’t try to be fancy
or use matrices here.)

8. Define the function sy : U — U by sg(u) := @ (here “s” stands for symmetry: this is a reflection

function). Check that sg(u) € U if u € U, so sp makes sense as a function from U to itself.

9. As an example, draw the four points 1,4, —1, —i in U (corresponding to angles [0], [w/2], [r], [37/2]).
Draw an arrow from each of these points z to rot,,2(z) (no proof needed: note that rot, (z) should once
again be one of these four points).

Repeat for rotr, s 2, and s;. Notice that sg is always a reflection function (no proofs needed).

10. Here is how you can compute sg o spr (composition for two different angles):

sg o sgr(u) = #(0) =u- #(0) =u- (0 —0) = roty(u).
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This shows that sgosg: = rotyg_g-. Compute using a similar argument the compositions rotg o sy, and sy oroty
(warning: not abelian!). Together with the calculation for roty o roty: done above, deduce that composing
different functions of the form roty or sy once again produces functions either of the form roty or s¢. In other
words, the combined set

Symy := {rotg | § € Rad} U {sy | 6 € Rad}

of functions from U to itself is closed under composition. The set of functions Symy is the “set of (distance-
preserving) symmetries of the circle” U C C (any symmetry of a circle that doesn’t change distances between
points is a rotation or a reflection). This group is also called O(2), the group of orthogonal transformations
of a two-dimensional vector space.

11. Show that the set of functions Symy with operation o (composition) is a group. You may assume
composition of functions is associative (so you do not need to prove the assosciativity axiom). Note: don’t
waste time showing these symmetry functions are bijective (and therefore invertible): the composition rules
you’ve found above will let you quickly find the inverse. Make sure to check, however, that the inverse you’re
defining is two-sided!

12. Extra credit: An element of a group g € (G, ) is “central” if g-x = x - g for any other x € G.
Show that Symy has exactly two central elements, and they form a subgroup.



