Math 113 Homework 5, due 2/26/2019

1. Say $(G, *)$ is a group and $H \subseteq(G, *)$ is a subset that is closed under the operation $*$. Then whether or not H is a subgroup, we can see that $(H, *)$ (operation inherited from G) is a valid binary structure. Show that if this binary structure is a group, then H is a group in the sense described in class, namely: $e_{G} \in H$ and if $h \in H$ then $h^{-1_{G}} \in H$ (you don't have to check closure, since this is one of our assumptions on the subset H). Hint: the group property of H implies there is an identity element $a \in H$. What is $a * a$? Remember that the operation $a * a$ doesn't depend on whether a is understood as an element of H or of G.
(2.-11.) Define $U \subseteq\left(\mathbb{C}^{*}, \cdot\right)$ to be the "unit circle", i.e. the subset $z \in \mathbb{C}^{*}| | z \mid=1$. The following problems will have to do with symmetries of the circle U given by rotations and reflections. Don't worry too much here about set-theoretic details and rigor: the idea is to do some computations and get a geometric picture of what are the "symmetry" functions $f: U \rightarrow U$ and how they compose.
2. Show that under multiplication, U is a subgroup of the multiplicative group \mathbb{C}^{*}, \cdot.
3. Define the function $e: \mathbb{R} \rightarrow U$ with $e(r):=\cos (r)+i \cdot \sin (r)$. Show that e does in fact take values in U, and check that e satisfies the homomorphism property (where \mathbb{R} is viewed as a group with additive structure).
4. We say $r \equiv_{2 \pi} s$ if $r-s$ is an integer multiple of 2π. Show that $\equiv_{2 \pi}$ is an equivalence relation and that $r \sim r^{\prime}, s \sim s^{\prime} \Longrightarrow r+s \sim r+s^{\prime}$, so the addition operation $[r]+[s]:=[r+s]$ is well-defined. Once well-definedness is checked, the group properties for \mathbb{R} imply that $\mathbb{R} / \equiv_{2 \pi}$ with the addition operation on classes given above is a group (once you check well-definedness you automatically get that it is a group with identity $[0]$ and $[a]^{-1}=[-a]$, no need to prove this).

For future problems, write $\operatorname{Rad}:=\mathbb{R} / \equiv_{2 \pi}$ "the group of radians": elements represent angles in radian notation, so that for example $[\pi]=[-\pi]=[3 \pi]$ corresponds to the angle 180° and $[\pi / 2]=[-3 \pi / 2]$ is 90°. The operation + defined in problem 4 is "angle addition".
5. Let's define the function $\varphi: \operatorname{Rad} \rightarrow U$ (where $\operatorname{Rad}:=\mathbb{R} / \equiv_{2 \pi}$) by $\varphi([r]):=e(r)$. (The symbol φ is the greek letter Phi.) Show that φ is well-defined. Show that it is an isomorphism (hint: you may use the homomorphism property of the function e.)
6. For $\theta \in \operatorname{Rad}$ (defined in problem 4), define the function $\operatorname{rot}_{\theta}: U \rightarrow U$ by $\operatorname{rot}_{\theta}(z):=\varphi(\theta) \cdot z$. Check that indeed, $\operatorname{rot}_{\theta}(z) \in U$ if $z \in U$. Check that, expressing $z=x+y \cdot i$, the operation $\operatorname{rot}_{\theta}$ rotates the point (x, y) by θ degrees counterclockwise around the origin, i.e. applies the matrix

$$
\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

to the vector $\binom{x}{y}$.
7. Show that the composition $\operatorname{rot}_{[\theta]} \circ \operatorname{rot}_{\left[\theta^{\prime}\right]}=\operatorname{rot}_{\left[\theta+\theta^{\prime}\right]}$, where all are interpreted as functions from U to
itself. (Remember that two functions are the same if all their values are the same and don't try to be fancy or use matrices here.)
8. Define the function $s_{\theta}: U \rightarrow U$ by $s_{\theta}(u):=\frac{\varphi(\theta)}{u}$ (here " s " stands for symmetry: this is a reflection function). Check that $s_{\theta}(u) \in U$ if $u \in U$, so s_{θ} makes sense as a function from U to itself.
9. As an example, draw the four points $1, i,-1,-i$ in U (corresponding to angles $[0],[\pi / 2],[\pi],[3 \pi / 2]$). Draw an arrow from each of these points z to $\operatorname{rot}_{\pi / 2}(z)$ (no proof needed: note that $\operatorname{rot}_{\pi / 2}(z)$ should once again be one of these four points).

Repeat for $\operatorname{rot}_{\pi}, s_{\pi / 2}$, and s_{π}. Notice that s_{θ} is always a reflection function (no proofs needed).
10. Here is how you can compute $s_{\theta} \circ s_{\theta^{\prime}}$ (composition for two different angles):

$$
s_{\theta} \circ s_{\theta^{\prime}}(u)=\frac{\varphi(\theta)}{\left(\frac{\varphi\left(\theta^{\prime}\right)}{u}\right)}=u \cdot \frac{\varphi(\theta)}{\varphi\left(\theta^{\prime}\right)}=u \cdot \varphi\left(\theta-\theta^{\prime}\right)=\operatorname{rot}_{\theta}(u)
$$

This shows that $s_{\theta} \circ s_{\theta^{\prime}}=\operatorname{rot}_{\theta-\theta^{\prime}}$. Compute using a similar argument the compositions $\operatorname{rot}_{\theta} \circ s_{\theta^{\prime}}$ and $s_{\theta^{\prime}} \circ \operatorname{rot}_{\theta}$ (warning: not abelian!). Together with the calculation for $\operatorname{rot}_{\theta} \circ \operatorname{rot}_{\theta^{\prime}}$ done above, deduce that composing different functions of the form $\operatorname{rot}_{\theta}$ or s_{θ} once again produces functions either of the form $\operatorname{rot}_{\theta}$ or s_{θ}. In other words, the combined set

$$
\operatorname{Sym}_{U}:=\left\{\operatorname{rot}_{\theta} \mid \theta \in \operatorname{Rad}\right\} \cup\left\{s_{\theta} \mid \theta \in \operatorname{Rad}\right\}
$$

of functions from U to itself is closed under composition. The set of functions $S y m_{U}$ is the "set of (distancepreserving) symmetries of the circle" $U \subseteq \mathbb{C}$ (any symmetry of a circle that doesn't change distances between points is a rotation or a reflection). This group is also called $O(2)$, the group of orthogonal transformations of a two-dimensional vector space.
11. Show that the set of functions $S y m_{U}$ with operation o (composition) is a group. You may assume composition of functions is associative (so you do not need to prove the assosciativity axiom). Note: don't waste time showing these symmetry functions are bijective (and therefore invertible): the composition rules you've found above will let you quickly find the inverse. Make sure to check, however, that the inverse you're defining is two-sided!
12. Extra credit: An element of a group $g \in(G, \cdot)$ is "central" if $g \cdot x=x \cdot g$ for any other $x \in G$. Show that $S y m_{U}$ has exactly two central elements, and they form a subgroup.

