Math 113 Homework 4, due 2/19/2019
Make sure you are using the 7th edition of Abstract algebra by Fraleigh - if you do the wrong problems, you won't get points!

1. Book exercises 5.1-5.7
2. Book exercises 5.11-5.13
3. Book exercises 5.21, 5.27, 5.28
4. Book exercise 4.28.
5. (a) Write down an addition table for the Klein 4 -group V (look it up in the book!). Write down an addition table for the Gaussian numbers modulo 2, i.e. $\mathbb{G} / 2 \cdot \mathbb{G}$ (this is the group of equivalence classes in \mathbb{G} modulo the relation \equiv_{2}, with $a+b i \equiv_{2} a^{\prime}+b^{\prime} i$ if their difference is 2 times another Gaussian number, $2 \cdot(c+d i)$. Give a function $V \rightarrow \mathbb{G} / 2 \cdot \mathbb{G}$ which takes one table to the other (i.e. is an isomorphism).
(b) Recall that the direct product $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ is the group of pairs ($[a],[b]$) of residues modulo n with componentwise addition $([a],[b])+\left(\left[a^{\prime}\right],\left[b^{\prime}\right]\right)=\left(\left[a+a^{\prime}\right],\left[b+b^{\prime}\right]\right)$. Construct an isomorphism from $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ to $(\mathbb{G} / n \cdot \mathbb{G},+$) (here the integer $n \geq 1$ is viewed as the Gaussian number $n+0 \cdot i$, and the group $\mathbb{G} / n \cdot \mathbb{G}$ is the group of residues \mathbb{G} / \equiv_{n} where $a+b i \equiv_{n} a^{\prime}+b^{\prime} i$ if the difference is $n \cdot k$ for $k=c+d \cdot i$ a Gaussian number).
6. Extra credit, worth either $1 / 2$ a problem or alternatively write "doing this problem instead of problem x " to replace one of problems 1.-4. but not 5: book exercise 4.29
