
Math 113 Homework 1, due 2/5/2019

1. Write an addition table for the integers modulo 3 (it should have nine entries).

2. (a) Multiply the following complex numbers by i and by −i:

2 + i,−i,−π + e · i,−
√

2− 2i.

(b) If z = a+ bi is a complex number, its complex conjugate is the number

z̄ := a− bi

with the imaginary part negated. Show that z · z̄ = a2 + b2. (This implies in particular that
it is a real, positive number.) Show (this should be easy) that iz · īz gives the same answer
as z · z̄.

(c) Find 8 distinct Gaussian numbers z such that z · z̄ = 5 (remember that z ∈ C is a
Gaussian number if z = a + bi for a, b ∈ Z). Note: the shorthand notation ± will be useful
here; for example, ±1± i represents shorthand for a set of four different complex numbers!

(d) Find 12 distinct Gaussian numbers z such that z · z̄ = 25. Hint: multiply together
pairs of numbers in part (c).

(e) Show that there are no Gaussian numbers z such that z · z̄ = 3 (hint: squares of
nonzero integers are always ≥ 1).

3. (a) Check that multiplication of Gaussian numbers modulo 2 + i is well-defined, i.e.
if α ∼ α′ are Gaussian numbers which are equivalent modulo 2 + i (i.e. their difference is a
Gaussian number divisible by 2 + i) and β ∼ β′ are two other Gaussian numbers which are
equivalent to each other then α ·α′ ∼ β ·β′ and α+α′ ∼ β+β′. Hint: write α′ = α+δ ·(2+i),
etc.

Remark: of course the specificity of working modulo 2 + i is not important here: we’re
using the example of 2+ i to check that modular arithmetic works for the Gaussian numbers.

(b) Remember that each Gaussian number is equivalent (modulo 2 + i) to one of the
five elements {0, 1, i,−1,−i}. Write down an addition table for the five classes of elements,
namely [0] (any element equivalent to 0), [i] (any element equivalent to i) etc. So for example,
[0] + [i] = [i] (here the calculation works on the nose), but [1] + [i] = [−1], since 1 + i is not
on the liest but 1 + i ∼ −1 (their difference is 2 + i), and −1 is. This table should have 25
entries (though half of them are immediate because of commutativity).

(c) Similarly, write down a multiplication table. (This will be surprisingly easy: this is a
special nice property of residues modulo 2 + i.)

4. (a) Now write down the addition table Z/5, the integers modulo 5. Can you find an
isomorphism

f : (Z/5,+)→ (G/(2 + i),+)
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of binary structures from the integers modulo 5 with addition to the Gaussian integers
modulo 2 + i (from the previous problem), also with addition? Can you find another,
different isomorphism? (To specify an isomorphism, write down a class of Gaussian integers
modulo 2 + i where each element of Z/5 goes, and check a couple of nontrivial cases of the
homomorphism property to convince yourself that this is actually an isomorphism.) Hint:
if you first pick where [1] ∈ Z/5 goes, you also know where [2] = [1] + [1] goes by the
homomorphism property, and then you know where [3] = [2] + [1] goes, etc.

5. View 2 as a Gaussian number. Then if α = a + bi is another Gaussian number, then
2α = 2a + 2bi, so a Gaussian number is divisible by 2 if both of its components are even,
and two Gaussian numbers are equal modulo 2 if their difference has even components. This
gives four equivalence classes of Gaussian numbers modulo 2, namely:

even + even · i, odd + even · i, even + odd · 1, and odd + odd · i.
We pick a “representative” Gaussian number in each class and write these in shorthand (in
the same order) as {[0], [1], [i], [1 + i]}. Now write addition and multiplication tables for the
Gaussian numbers modulo 2.

6. Challenge problem: you can do this one instead of any two of the others,
or you can do it as extra credit for an extra 10% on this HW.

(a) Show that any complex number is a distance of at most
√
2
2

away from a Gaussian

number (hint:
√
2
2

is the distance from a vertex of the unit square to its center).

(b) Show that if α is a nonzero complex number, then any complex number z is at most√
2|α|
2

away from a multiple of α (hint: if z is distance d from λ ·α then z
α

is distance d
|α| away

from λ).

(c) Deduce that if α = a + bi is a nonzero Gaussian number then any other Gaussian
number z ∈ G is equivalent modulo α to a Gaussian number of magnitude < |α| (remember
that |α| =

√
a2 + b2). This is a version of “division with remainder” for Gaussian numbers.

(d) This means that all “colors”, or types of residue modulo α are contained in the interior
of the circle of radius |α| (in fact, we’ve seen they are contained in the closed circle of

radius
√
2
2
α). Give an example, however, where two such residues are the same (i.e. we are

“overcounting”).

Remark: from part (c) above, you can deduce that there are less than πr2

residue classes modulo α, where r2 = |α|2 = a2 + b2. This is nice, because it implies
that there are finitely many possibilities for the residue, which was not obvious
a priori. Part (d) shows that this estimate will tend to overcount. In fact this
estimate is off by a constant. There is a beautiful formula for the total number of
residues: it is exactly a2 + b2. While you don’t have to do this, I would encourage
you to check this formula when α = a+ 0i is real and positive.


