Math 113 Homework 1, due 2/5/2019

1. Write an addition table for the integers modulo 3 (it should have nine entries).
2. (a) Multiply the following complex numbers by i and by $-i$:

$$
2+i,-i,-\pi+e \cdot i,-\sqrt{2}-2 i
$$

(b) If $z=a+b i$ is a complex number, its complex conjugate is number

$$
\bar{z}:=a-b i
$$

with the imaginary part negated. Show that $z \cdot \bar{z}=a^{2}+b^{2}$. (This implies in particular that it is a real, positive number.) Show (this should be easy) that $i z \cdot \overline{i z}$ gives the same answer as $z \cdot \bar{z}$.
(c) Find 8 distinct Gaussian numbers z such that $z \cdot \bar{z}=5$ (remember that $z \in \mathbb{C}$ is a Gaussian number if $z=a+b i$ for $a, b \in \mathbb{Z}$). Note: the shorthand notation \pm will be useful here; for example, $\pm 1 \pm i$ represents shorthand for a set of four different complex numbers!
(d) Find 12 distinct Gaussian numbers z such that $z \cdot \bar{z}=25$. Hint: multiply together pairs of numbers in part (c).
(e) Show that there are no Gaussian numbers z such that $z \cdot \bar{z}=3$ (hint: squares of nonzero integers are always ≥ 1).
3. (a) Check that multiplication of Gaussian numbers modulo $2+i$ is well-defined, i.e. if $\alpha \sim \alpha^{\prime}$ are Gaussian numbers which are equivalent modulo $2+i$ (i.e. their difference is a Gaussian number divisible by $2+i$) and $\beta \sim \beta^{\prime}$ are two other Gaussian numbers which are equivalent to each other then $\alpha \cdot \alpha^{\prime} \sim \beta \cdot \beta^{\prime}$ and $\alpha+\alpha^{\prime} \sim \beta+\beta^{\prime}$. Hint: write $\alpha^{\prime}=\alpha+\delta \cdot(2+i)$, etc.

Remark: of course the specificity of working modulo $2+i$ is not important here: we're using the example of $2+i$ to check that modular arithmetic works for the Gaussian numbers.
(b) Remember that each Gaussian number is equivalent (modulo $2+i$) to one of the five elements $\{0,1, i,-1,-i\}$. Write down an addition table for the five classes of elements, namely $[0]$ (any element equivalent to 0), $[i]$ (any element equivalent to i) etc. So for example, $[0]+[i]=[i]$ (here the calculation works on the nose), but $[1]+[i]=[-1]$, since $1+i$ is not on the liest but $1+i \sim-1$ (their difference is $2+i$), and -1 is. This table should have 25 entries (though half of them are immediate because of commutativity).
(c) Similarly, write down a multiplication table. (This will be surprisingly easy: this is a special nice property of residues modulo $2+i$.)
4. (a) Now write down the addition table $\mathbb{Z} / 5$, the integers modulo 5 . Can you find an isomorphism

$$
f:(\mathbb{Z} / 5,+) \rightarrow(\mathbb{G} /(2+i),+)
$$

of binary structures from the integers modulo 5 with addition to the Gaussian integers modulo $2+i$ (from the previous problem), also with addition? Can you find another, different isomorphism? (To specify an isomorphism, write down a class of Gaussian integers modulo $2+i$ where each element of $\mathbb{Z} / 5$ goes, and check a couple of nontrivial cases of the homomorphism property to convince yourself that this is actually an isomorphism.) Hint: if you first pick where $[1] \in \mathbb{Z} / 5$ goes, you also know where $[2]=[1]+[1]$ goes by the homomorphism property, and then you know where $[3]=[2]+[1]$ goes, etc.
5. View 2 as a Gaussian number. Then if $\alpha=a+b i$ is another Gaussian number, then $2 \alpha=2 a+2 b i$, so a Gaussian number is divisible by 2 if both of its components are even, and two Gaussian numbers are equal modulo 2 if their difference has even components. This gives four equivalence classes of Gaussian numbers modulo 2, namely:

```
even + even }\cdoti\mathrm{ , odd + even }\cdoti\mathrm{ , even }+\mathrm{ odd }\cdot1\mathrm{ , and odd }+\mathrm{ odd }\cdoti\mathrm{ .
```

We pick a "representative" Gaussian number in each class and write these in shorthand (in the same order) as $\{[0],[1],[i],[1+i]\}$. Now write addition and multiplication tables for the Gaussian numbers modulo 2.
6. Challenge problem: you can do this one instead of any two of the others, or you can do it as extra credit for an extra 10% on this HW.
(a) Show that any complex number is a distance of at most $\frac{\sqrt{2}}{2}$ away from a Gaussian number (hint: $\frac{\sqrt{2}}{2}$ is the distance from a vertex of the unit square to its center).
(b) Show that if α is a nonzero complex number, then any complex number z is at most $\frac{\sqrt{2}|\alpha|}{2}$ away from a multiple of α (hint: if z is distance d from $\lambda \cdot \alpha$ then $\frac{z}{\alpha}$ is distance $\frac{d}{|\alpha|}$ away from λ).
(c) Deduce that if $\alpha=a+b i$ is a nonzero Gaussian number then any other Gaussian number $z \in \mathbb{G}$ is equivalent modulo α to a Gaussian number of magnitude $<|\alpha|$ (remember that $|\alpha|=\sqrt{a^{2}+b^{2}}$). This is a version of "division with remainder" for Gaussian numbers.
(d) This means that all "colors", or types of residue modulo α are contained in the interior of the circle of radius $|\alpha|$ (in fact, we've seen they are contained in the closed circle of radius $\frac{\sqrt{2}}{2} \alpha$). Give an example, however, where two such residues are the same (i.e. we are "overcounting").

Remark: from part (c) above, you can deduce that there are less than πr^{2} residue classes modulo α, where $r^{2}=|\alpha|^{2}=a^{2}+b^{2}$. This is nice, because it implies that there are finitely many possibilities for the residue, which was not obvious a priori. Part (d) shows that this estimate will tend to overcount. In fact this estimate is off by a constant. There is a beautiful formula for the total number of residues: it is exactly $a^{2}+b^{2}$. While you don't have to do this, I would encourage you to check this formula when $\alpha=a+0 i$ is real and positive.

