\documentclass[12pt]{amsart} \usepackage{amsfonts} \usepackage{tikz-cd} \setlength{\topmargin}{0in} \setlength{\textheight}{10in} \setlength{\oddsidemargin}{0in} \setlength{\evensidemargin}{0in} \setlength{\textwidth}{6.5in} \parskip0.4em \thispagestyle{empty} \def\R{\mathbb{R}} \def\Z{\mathbb{Z}} \def\Q{\mathbb{Q}} \def\C{\mathbb{C}} \def\G{\mathbb{G}} \renewcommand{\phi}{\varphi} \begin{document} \begin{center} {\bf Math 113 Homework 12, due 4/23/2019.} \\ {\bf Note that the due date is the day of the midterm -- it is strongly recommended that you do these exercises by Thursday, 4/18.} \end{center} \medskip \noindent {\bf 1.} Let $f(x) = x^2 + x + 1\in \Z_7[x].$ Compute the residue of $g(x) = x^4 + 3x^3 + 3x^2 + x + 4$ modulo $f$. \noindent {\bf 2.} Let $f(x) = x^2 +1\in \R[x].$ (a) Compute the residue of $s(x) = a + bx + cx^2$ modulo $f.$ (It should be a polynomial of degree less than $f$.) (b) Compute the product $([a + bx])([c + dx])\in \R[x]/(f),$ by finding the residue of the product modulo $x^2 + 1$. (c) Show that the function $\R[x]/(f)$ is isomorphic to the complex numbers via the homomorhpism $\phi:\R[x]\to\C$ given by $\phi([a + bx]): = a + bi.$ \noindent {\bf 3.} Let $g(x) = x^3 -2x -4\in \Q[x].$ Check that $[x-2]$ is a zero divisor in $\R[x]/(g).$ In other words, there is a nonzero remainder $f(x)$ (of degree smaller than $g$) such that $f(x)*(x-2)$ is equal to $0$ modulo $g(x).$ (Hint: use the division algorithm to divide $g(x)$ by $x-2$.) \end{document}