Math 113 Homework 12, due 4/23/2019.
Note that the due date is the day of the midterm - it is strongly recommended that you do these exercises by Thursday, 4/18.

1. Let $f(x)=x^{2}+x+1 \in \mathbb{Z}_{7}[x]$. Compute the residue of $g(x)=x^{4}+3 x^{3}+3 x^{2}+x+4$ modulo f.
2. Let $f(x)=x^{2}+1 \in \mathbb{R}[x]$.
(a) Compute the residue of $s(x)=a+b x+c x^{2}$ modulo f. (It should be a polynomial of degree less than f.)
(b) Compute the product $([a+b x])([c+d x]) \in \mathbb{R}[x] /(f)$, by finding the residue of the product modulo $x^{2}+1$.
(c) Show that the function $\mathbb{R}[x] /(f)$ is isomorphic to the complex numbers via the homomorhpism $\varphi: \mathbb{R}[x] \rightarrow \mathbb{C}$ given by $\varphi([a+b x]):=a+b i$.
3. Let $g(x)=x^{3}-2 x-4 \in \mathbb{Q}[x]$. Check that $[x-2]$ is a zero divisor in $\mathbb{R}[x] /(g)$. In other words, there is a nonzero remainder $f(x)$ (of degree smaller than g) such that $f(x) *(x-2)$ is equal to 0 modulo $g(x)$. (Hint: use the division algorithm to divide $g(x)$ by $x-2$.)
