Math 113 Homework 11, due 4/16/2019

1. Find all x with $x^{2}-4=0$ in $\mathbb{Z}_{5} \times \mathbb{Z}_{7}$. Now find all x with $x^{2}-4=0$ in \mathbb{Z}_{35} (by the Chinese remainder theorem, the two sets of solutions have the same cardinality and get sent to one another under the isomorphism that takes $a \in \mathbb{Z}_{35}$ to $\left.(a \bmod 5, a \bmod 7)\right)$.
2. Recall that the Gaussian integers \mathbb{G} are complex numbers $a+b i$ with integer a, b.
(a) Check that $\mathbb{G} \subseteq \mathbb{C}$ is a subring.
(b) Let $n \in$ be a positive integer. For $z, z^{\prime} \in \mathbb{G}$ we say that $z \equiv_{n} z^{\prime}$ if $n \mid z^{\prime}-z$. Recall (from problem set 4) that every class in \mathbb{G} / \equiv_{n} can be uniquely represented by $a+b i$ for $a, b \in\{0, \ldots, n-1\}$ remainders modulo n. You have checked in earlier homeworks that addition and multiplication are well defined on \mathbb{G} / \equiv_{n}, hence it is also a ring. Check that \mathbb{G} / \equiv_{3} is a field (by finding an inverse for every element). This is a field with 9 elements in fact, any other field with 9 elements is isomorphic to this one!
(c) Check that \mathbb{G} / \equiv_{5} is not a field (hint: find a zero divisor).
3. $20.4,20.5$,
4. 20.8, 20.10 (the function $\varphi(n)$ computes the number of residues $\bmod n$ which are relatively prime with n, so for example $\varphi(p)=p-1$ for p prime).
5. 20.23 (notation: "unity" means multiplicative identity element, "unit" means invertible element).
6. Extra credit: $20.27,20.28$
