Math 113 Homework 10, due 4/9/2019

1. (Note: in this exercise, please don't call the additive and multiplicative identity elements 0 and 1 if there is any risk of confusion.)
(a) Let F be the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, equipped with the operations of function addition $(f+g)(x)=f(x)+g(x)$ and composition $(f \circ g)(x)=f(g(x))$. Show that $(F,+, \circ)$ satisfies all the axioms of a ring with unity, with just one exception - which one?
(b) Let $\overline{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$ be the set formed by adjoining an element called " ∞ " to \mathbb{R}, and consider the operations $a \oplus b=\min (a, b)$ ($=$ the lesser of a and b; with the convention that ∞ is greater than any real number), and $a \otimes b=a+b$ (with the convention that $a+\infty=\infty+a=\infty$ for all $a \in \mathbb{R}$, and $\infty+\infty=\infty$). Show that $(\overline{\mathbb{R}}, \oplus, \otimes)$ satisfies all the axioms of a field, with just one exception - which one?
(c) Show that $\{a+b \sqrt{5} \mid a, b \in \mathbb{Q}\}$ with the usual addition and multiplication is a field.
2. True or false? (As usual, justify your answers)
(a) The set of all pure imaginary complex numbers $\{a i \mid a \in \mathbb{R}\}$ with the usual addition and multiplication is a ring.
(b) If R^{\prime} is a subring of a field K, then R^{\prime} is also a field.
(c) If K is a field then the equation $x^{2}=x$ has exactly two solutions in K.
(d) If K is a field with multiplicative identity 1 and K^{\prime} is a subfield of K with multiplicative identity 1^{\prime}, then $1^{\prime}=1$. (Hint: use (c)).
(e) If R is a ring with multiplicative identity $1 \neq 0$ and R^{\prime} is a subring with multiplicative identity $1^{\prime} \neq 0$, then $1^{\prime}=1$. (Hint: consider a direct product.)
(f) The direct product of two fields is a field.
3. 18.20. The ring $M_{2}\left(\mathbb{Z}_{2}\right)$ is the ring of matrices $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where $a, b, c, d \in \mathbb{Z}_{2}$ are residues modulo 2. You may use that a matrix M is invertible if and only if $|M|=a d-b c$ is not zero (modulo 2).
4. 19.27 (remember: "unity" means multiplicative identity and "unit" means invertible element).
