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1 Introduction

Recall that homological mirror symmetry, as conjectured by Kontsevich [K],
relates the derived category of coherent sheaves on a (nice) algebraic variety to
the Fukaya category of the mirror symplectic manifold. Since Kontsevich’s for-
mulation, many variations on the theme of homological mirror symmetry have
emerged, in which the categories compared keep track of additional structures
such as equivariance, potential functionals, or boundary conditions on one or
both of the manifolds in the mirror pair. The sequence of papers [NZ], [N],
[FLTZ1], [FLTZ2], [FLTZ3] and [T] works out such a (modified) mirror symme-
try statement for toric varieties. The correspondence is broken up into two parts.
The first step is Nadler’s proof in [N] (based on work with Zaslow [NZ]) that, for
S a topological space, the (triangulated envelope of the) Fukaya category on the
cotangent space T ∗S is equivalent to the derived category of complexes of (nice)
constructible topological sheaves on S. The second part is Treumann’s [T] proof
(building up from [FLTZ1] and [FLTZ2], with Fang, Liu and Zaslow) that, for X
an n-dimensional toric variety, the derived category of perfect coherent sheaves
on X embeds into the derived category of constructible sheaves on the topo-
logical torus (S1)n. These two results then compose to give an embedding of
triangulated categories Db Perf(X) → DFuk((S1)n). Treumann’s analysis fur-
ther shows that the functor Db Perf(X) → Db Constr(X) factors through the
full (triangulated) subcategoryDb ConstrΛ(X) of constructible complexes with a
certain singular support condition (determined by the fan of X). On the Fukaya
side, this corresponds (via the equivalence of [N]) to a certain asymptotic condi-
tion on the branes in the Fukaya category. All of this is surveyed (with another
construction of the direct functor Db Perf(X)→ DFuk((S1)n)) in [FLTZ3]. The
functor Db Perf(X) → Db ConstrΛ((S1)n) is called the coherent-constructible
correspondence by Treumann et al, and it is conjectured e.g. in [FLTZ1] that
it is an isomorphism: they prove that a related constructible model for torus-
equivariant sheaves on X is equivalent to the category of perfect sheaves on X.
The paper [SS] by Sibilla and Scherotzke proves such a statement for certain spe-
cial classes of toric varieties (including all Fano varieties). In the present paper
we prove the coherent-constructible correspondence for arbitrary smooth toric
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varieties. We further generalize results of [FLTZ1] and [FLTZ2] to categories of
(lower-bounded) complexes of sheaves without a finite-dimensionality condition.
This implies an equivalence of categories between the category Db Perf(X) and
a certain explicit Fukaya category, completing a mirror symmetry statement for
such X.

In the course of this writing, Nicolò Sibilla has informed the author that in
an upcoming paper with Sarah Scherotzke they have strengthened techniques
in [SS] to a proof for all toric varieties (without a smoothness condition) of
the fact that the nonequivariant coherent-constructible correspondence is an
equivalence.

Although the original motivation for the coherent-constructible correspon-
dence comes from mirror symmetry, the fact that it is an equivalence is also
interesting from a couple of alternative points of view. Firstly, note that for
the toric variety X = P1, the singular support condition in the target of
the coherent-constructible correspondence simply picks out all complexes of
sheaves on S1 with cohomology constructible with respect to the stratification
S1 = (0, 1) t {∞}. Now note that such a sheaf V on S1 is fully determined
by the two cospecialization maps between fibers V{∞} → V(0,1) corresponding
to deforming the singular fiber to the left or to the right. From this point of
view, the fact that the coherent-constructible correspondence is an equivalence
implies an equivalence between the category Db ConstrΛ(S1) and the derived
category of representations of the Kronecker quiver • ⇒ •. This provides an
alternative (“topological”) explanation (and a generalization to all smooth toric
varieties) of Beilinson’s derived equivalence between coh(P1) and Rep(• ⇒ •)
which arguably kicked off the serious study of derived categories. The gener-
alization (also due to Beilinson [B]) which gives quiver-like models for Pn can
also be reconstructed from this singular-support model. Note that these results
follow also from [SS].

Another point of view on this result (and the one that led the author to it)
comes from the theory of p-adic representations. Namely, in [BK], Bezrukavnikov
and Kazhdan construct a certain category RepG associated to any (split, semisim-
ple, n-dimensional) p-adic group which compactifies (in a category-theoretic
sense). There is a functor from the category of equivariant sheaves on the
Bruhat-Tits building forG to RepG which is analogous to the Beilinson-Bernstein
localization functor for category O, and it is an interesting problem to identify
the image of this functor. Now the category Rep has a component compactify-
ing the category of Iwahori-biinvariant representations which is a deformation of
category of Weyl-group equivariant sheaves on a toric variety XG defined by the
root data. The analysis in the present paper implies that the derived category
of such representations is equivalent to the category of ΛnW -equivariant com-
plexes of constructible sheaves on Rn which satisfy a certain singular support
condition. Now Rn is naturally identified with an “apartment” in the Bruhat-
Tits building Bn, and using this identification one can deduce a localization
result for the Iwahori-biinvariant part of the compactified category. This theory
is related also to Theorem 16 in section 11.3.
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3 Statement of results

Let T be an algebraic torus, Λ = X∗(T ) its character lattice and N = X∗(T )
the cocharacter lattice. Write ΛR, NR for the R-vector spaces spanned by Λ
and N . We will often use alternative notation A := ΛR when thinking of ΛR
as a Λ-equivariant real affine space. Let Σ be a toric fan in NR, and X the
corresponding toric variety. Recall that every complex of constructible sheaves
V (constructible with respect to a Whitney stratification) on a smooth top-
logical manifold X has a coisotropic singular support (singular) submanifold
Supp(V) ⊂ T ∗X. It is natural to consider the full (DG) subcategory Constr(X,L)

of complexes of sheaves with singular support contained in some fixed subspace
L ⊂ T ∗X: this category is in particular stable under formation of finite limits
and directed colimits. The most well-studied example of such categories occurs
when L is the union of (closures of) normal varieties of strata of a Whitney
stratification S of X: in this case, the DG category Constr(X,L) is equivalent to
the category of constructible complexes whose cohomology is constructible with
respect to the stratification S. This category is equivalent to the derived cate-
gory of complexes of constructible sheaves along S if the Whitney stratification
is polyhedral, although in general categories with singular support conditions
may not have a natural t-structure.

In [FLTZ1], Fang, Liu, Treumann and Zaslow relate the derived category of
sheaves on an n-dimensional toric varietyX to a category of sheaves on A/Λ with
singular support contained in a certain polyhedral submanifold LΣ/Λ defined
in terms of the toric fan. Namely, define the following singular Lagrangian
manifold [FLTZ1].

Definition 1. Let L(= LΣ) ⊂ T ∗(A) ∼= ΛR ⊕ Λ∨R be the union

L :=
⋃

σ∈Σ,λ∈Λ

(σ∨ + λ)× σ.

Define also

−L :=
⋃

σ∈Σ,λ∈Λ

(σ∨ + λ)× (−1) · σ

for the “antipodal” variety whose fiber (−L)x over x ∈ A is the antipode of Lx.

Then [FLTZ1] proves the following result.
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Theorem (Compactly-supported equivariant coherent-constructible equivalence,
[FLTZ1]). Let X be an arbitrary toric variety. Then there is an equivalence of

categories κcs : PerfT (X) → Db Constrcs,fin−LΣ
(A) from perfect equivariant com-

plexes on X to compactly-supported constructible sheaves with finite-dimensional
stalks on the affine space A with singular support in −LΣ.

It is conjectured in [FLTZ1] that the non-equivariant category Perf(X) is
equivalent to a singular support subcategory of derived constructible sheaves.
In [T], Treumann constructs a non-equivariant version of this functor, κ :

Perf(X) → Db Constrfin(−LΣ)/Λ(A/Λ) to the category of complexes of sheaves

with finite-dimensional stalks and singular support in the quotient coisotropic
variety, L/Λ, which he shows is fully faithful. He conjectures

Conjecture 1 (Non-equivariant coherent-constructible equivalence). The func-
tor κ is an equivalence.

He proves this conjecture in certain special cases. The paper [SS] proves it
for a more general class of toric varieties generalizing Fano varieties. The paper
[Ku] treats the case of smooth toric surfaces. In this paper, we will prove this
conjecture for all smooth toric varieties. Note that (see Section 10) the category
Db Qcoh(X) ∼= (Db QcohT (X))Λ, where the character group Λ = X∗(T ) acts on
the category Db Qcoh(X) by functors, with λ twisting by the character Cλ of T .
From this it follows that in order to prove Conjecture 1 for smooth varieties, it
is sufficient to strengthen Theorem 3 in a way that treats equivariant complexes
of quasicoherent sheaves on X which are not necessarily coherent, which corre-
spond to complexes of sheaves on A which are not necessarily finite-dimensional
or compactly-supported. Thus we reduce to the following conjecture (indeed,
stronger then Conjecture 1).

Conjecture 2 (General equivariant coherent-constructible equivalence). There
is an equivalence of derived categories, κ : Db QcohT (X) → Db Constr−L(A)
between such that the action of Λ by characters on the left is intertwined with
the action by shifts of A on the right (both viewed as genuine group actions on
categories).

It turns out that all of the above results are implied from a “cosheaf” version
of Conjecture 2 above, which we will spend the bulk of this short paper proving.
Define the abelian category of cosheaves on A to be the opposite category of
shaves on A with values in Vectop . We use the notation:

AA :=
(

ShVectop

X

)op

.

Intuitively, the notion of cosheaf is what happens if we invert all arrows in the
definition of a sheaf, and replace colimits with limits in the glueing axioms. The
category of cosheaves has a good derived category, which we will denote

CA := DbAA,
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and a good notion of (combinatorial) singular support (see Definition 2).
Now write CA(X,L) for the full subcategory of complexes of cosheaves with

singular support in L. Then we will prove the following result.

Theorem 1. Suppose that X is proper. The category C∨
(A,L̃)

of complexes of

constructible cosheaves on the universal cover A of A/Λ with singular support

contained in the lift L̃ is equivalent to the category of complexes of T ∗-equivariant
quasicoherent sheaves on X. Further, this equivalence takes derived global sec-
tions over A to (derived) global sections over T ⊂ X, and action of Λ on the
category C

(A,L̃)
coincides with action on Db coh(X)T of the character lattice of

the torus.

From this we will deduce in section 10 our main result:

Theorem 2. Conjectures 1 and 2 hold.

In particular, in that section we will see how results for proper smooth
varieties imply results for arbitrary smooth varieties.

4 Constructible sheaves and cosheaves

We will collect here for use in future sections some technical properties of con-
structible cosheaves and their singular support. The section has no deep content.

We make the following definition.

Definition 2. We say that a vector χ ∈ T ∗x (A) is not in the singular support
subvariety of a complex of sheaves V if, for any Morse function f on A with
f(x) = 0 and dxχ = v, there is a small ball B 3 x such that the cospecialization
map

RΓ
(
B ∩ f−1 ((−∞; 0)) ,V

)
→ Γ

(
B ∩ f−1 ((−∞; ε)) ,V

)
is a quasiisomorphism for ε > 0 sufficiently small.

When we are studying a polyhedral stratification of an affine space A, it is
sufficient to only consider linear f .

It will be more convenient for us to work with the DG category of complexes
of cosheaves, but it turns out that the derived categories of sheaves and cosheaves
with a support condition can be identified using the following result.

Lemma 3 (Covariant Verdier correspondence, essentially [KS] Prop. 9.4.4).
The derived categories C(A,strat) of cosheaves stratified with respect to the Si and
the category C∨(A,strat) of sheaves stratified with respect to the Si are equivalent,

with the equivalence taking a sheaf V to the cosheaf U 7→ Γc(U,V) of compactly
supported sections. Moreover, this “Verdier equivalence” takes the singular sup-
port manifold L to the fiberwise antipodal manifold −L (with fiber (−1) ·Lx over
any x ∈ A).
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Proof. The covariant Verdier correspondence takes a sheaf V to its cosheaf of
derived sections with compact support (see [D], chapter 3 for a definition, and
[C] shows this is an equivalence in the cellular case.) For bounded complexes of
sheaves with finite-dimensional fibers, the correspondence takes a sheaf to the
stalkwise dual cosheaf of the Verdier dual sheaf, given by Vcov : V 7→ (DV)∨.
Now it is clear that taking a cellular constructible sheaf to its stalkwise dual
cosheaf V∨ does not change singular support (defined in Definition 2), as a
corestriction map RΓ(D,V∨) → RΓ(D′,V∨) on bounded open subsets is dual
to the restriction map.

Now we have ([KS], Prop. 9.4.4) that Verdier duality D takes a bounded
complex of sheaves with finite-dimensional fibers with singular support L to a
complex of sheaves with singular support −L. This completes the lemma in the
case when V is a bounded complex of sheaves with finite-dimensional stalks. We
deduce the result for general cosheaves by noting that, as the question is local,
we can assume that the base is compact, and any bounded complex of cosheaves
on a compact cellular manifold is a colimit of complexes with finite fibers.

We will use the following consequence of the singular support definition
above.

Proposition 4. Suppose V is a constructible (dg) cosheaf on A with respect to
a polyhedral stratification, with singular support L ⊂ T ∗A. Let Θ be some open
affine cone in A (or, more generally, the intersection of any finite collection of
half-spaces). Suppose v ∈ ΛR is a nonzero vector such that all fibers of L over
A are contained the perpendicular half-space v⊥ ⊂ (ΛR)∗. Then the sheaf of
sections RΓ(V,Θ + εv) (for ε ∈ R+ small and nonnegative) is constant.

Proof. For sheaves, this is a standard consequence of the combinatorial defini-
tion of singular support, see e.g. [NY], Lecture 13. For cosheaves, dual argu-
ments apply.

5 A combinatorial model for equivariant quasi-
coherent sheaves

We use a combinatorial model for the category of T -equivariant quasicoherent
sheaves on X which is closely related to representations of the category 〈Θ〉,
constructed in [FLTZ1], and which we will call J in this paper. However, we
end up having to impose a descent condition on the category of representations
of J ∼= 〈Θ〉, which we will later think of in analogy with a sheaf condition in
topology.

Consider the category of T -equivariant coherent sheaves on our smooth,
compact toric variety X. Readers familiar with the combinatorics of fans will
recall that X is covered by a collection of T -equivariant affine subspaces Xσ

where σ varies over the toric fan, that Xσ ∩ Xτ = Xσ∩τ , and that the ring
of functions Oσ on Xσ is the semigroup ring spanned by tλ for λ varying over
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the integral points Λ ∩ σ∨. Torus action just establishes a Λ-grading on all the
rings and spaces involved, with the unsurprising rule that tλ has weight λ (in
every equivariant affine). Now suppose F is an equivariant coherent sheaf on
X. It is determined by the collection of its restrictions Fσ which have to be Oλ
modules, along with restriction maps rστ : Fσ → Fτ | τ ⊂ σ, and a torus action,
which imposes compatible gradings on the Fσ. Write InQcohT for the category
of “incoherent equivariant sheaves”, i.e. compatible collections of λ-graded Oσ
modules, (Fσ, rστ ) (as σ ⊃ τ vary), without the “quasicoherence” condition
that Fσ ⊗Oσ Oτ ∼= Fτ .

Remark 1. One can show that the data of an object of InQcohT defines a
T -equivariant sheaf of O-modules over X which is not necessarily quasicoher-
ent (hence the terminology), and it is straightforward to check that InQcohT is
in fact a full subcategory of T -equivariant sheaves of O-modules. With a lit-
tle more work, one can show that this Abelian category is naturally identified
with the category of modules with a certain stratified version of quasicoherence.
Namely, define the category of stratified coherent sheaves (with respect to the
stratification of X by torus orbits) to be the full subcategory of sheaves F of
O-modules on X in the Zariski topology with the following condition.

• For any pair of open sets V ⊂ U such that U \ V does not intersect the
generic point of any torus orbit T · x, we require that FV ∼= FU ⊗OU OV .

Then the category InQcoh is equivalent to the category of T -equivariant strati-
fied coherent sheaves. Moreover, Λ-equivariant representations of the poset J is
equivalent (via arguments similar to Lemma 14) to the category of (not necessar-
ily equivariant) sheaves on X with the analogous stratified coherence condition.
See [T] for another model for the category of Λ-equivariant representations of
J . We will not use these facts here.

If we write more precisely Fσ〈λ〉 for the λ-graded component of Fσ, the data
of a collection (Fσ) ∈ InQcoh amounts to the following:

• Morphisms tµ(σ) : Fσ〈λ〉 → Fσ+λ〈λ+ µ〉 for µ ∈ Λ ∩ Σ∨;

• Restriction maps rστ : Fσ〈λ〉 → Fτ 〈λ〉.

These have to satisfy the conditions that

• rστ is compatible with Λ ∩ σ∨-action

• tµ(σ) commute and

• rτυrστ = rσυ.

Note that both the generators and the relations above have no addition or
multiplication. This means that the category InQcoh is in fact the category of
representations in Vect of some (nonadditive) index category, with objects •σ〈λ〉
indexed by pairs (σ, λ) and morphisms spanned by the tµ(σ) and rστ , satisfying

the relations above. Call this category J . Now it can be checked combinatorially

7



that J is equivalent to the following poset category which we call J (called 〈Θ〉
in [FLTZ1]).

Definition 3. Write Θ(λ, σ) ⊂ A for the open subset σ∨ + λ. We call such
subsets “integral affine cones”.

Now we define J :

• Objects of J are the integral affine cones.

• J has a single map from Θ(λ, σ) to Θ(λ′, σ′) if and only if Θ(λ, σ) ⊂
Θ(λ′, σ′).

The condition Θ(λ, σ) ⊂ Θ(λ′, σ′) occurs whenever σ ⊃ σ′ and λ − λ′ ∈ (σ′)∨.
Note that there is some ambiguity in the definition since Θ(λ, σ) = Θ(λ′, σ)
when λ − λ′ ∈ σ⊥. But this is resolved by observing that the category with
objects parametrized by pairs (λ, σ) and morphisms as above is equivalent to the
poset of the distinct integral cones ordered by inclusion (one is the isomorphism-
contracted version of the other).

Now taking rστ to the containment Θ(σ, λ) ⊂ Θ(τ, λ) and tµ(σ) to the in-

clusion Θ(σ, λ) → Θ(σ, λ − µ) (when µ ∈ σ∨) gives us a functor of categories
from the index category of the •σ,λ with J , and this can be seen to be an equiv-

alence of index categories. This gives us an interpretation of InQcohT (X) as
representations of J .

Now the category coh(X) is the full subcategory of Semicoh(X) of collections
Fσ satisfying the localization condition Fτ = Fσ⊗OσOτ . Localization is a direct
limit. Because the Oσ are semigroups algebras, we can interpret the operation
−⊗Oσ Oτ as the direct limit over an explicit diagram.

Namely, choose any collection λ1, λ2, λ3, . . . ∈ τ∨∩Λ such that λi−λi+1 ∈ σ∨
(they become “more negative” with respect to σ), and such that for any point
m ∈ σ \ τ of the complement of the two cones in the fan, the dot products
〈m,λi〉 go to −∞ (i.e. the λi eventually become “as negative as possible” with
respect to σ while staying in τ∨.) Given such a collection, we get maps from Fσ
to itself which we can index by the diagram: tλ1Fσ → tλ2Fσ → tλ3Fσ → . . ..
(Note that λi may not be in Oσ, but we still make sense of this formally since
t(λi−λi+1) is indeed in Oσ). Now

Fσ ⊗Oσ Oτ = colim tλiFσ.

Note that the condition on the λi above is precisely the condition that the
sets Θ(σ, λi) satisfy Θ(σ, λ1) ⊂ Θ(σ, λ2) ⊂ . . . , and the union

⋃
i Θ(τ). From this

we can see that in terms of the language of representations of J , the localization
condition correpsonds to the following descent condition.

Theorem 5. The category of T -equivariant quasicoherent sheaves on X is
equivalent to the category of representations of J with the following condition.

(∗) The evident map colimi F(Θ(σ, λ+λi))→ F(Θ(τ, λ)) must be an isomor-
phism for σ ⊂ τ, the λi as above and λ ∈ Λ arbitrary (corresponding to
choice of graded component).
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This looks suspiciously like a cosheaf condition. The crucial insight we gain
from this geometric encoding of our index categories is the following:

Observation 1. If V is a cosheaf on A, then we have an “evaluation at cones”
functor from the category of cosheaves on A to Rep(J), given by

Θ(σ, λ) 7→ Γ(V,Θ(σ, λ)).

As we’ve encoded condition (∗) above as an infinite coglueing condition (which
any cosheaf on A must satisfy), we see that the image of a cosheaf on A under
this functor satisfies condition (∗), hence gives an equivariant coherent sheaf on
X.

In the next sections we will study the derived functor of this evaluation
functor, which we call Π∗, as well as its right adjoint.

6 Cosheaves, Copresheaves, and change of space
functors

We will view the conditions (∗) as a purely combinatorial condition. But it is
helpful for intuition to think of the Θ(σ, λ) as “sort of” opens of a topological
space J , which we call the “Morelli topology”, which has open covers in the form
of the diagram (∗), and to think of quasicoherent sheaves on X as corresponding
to sheaves on J . The notation we use will be suggestive of this point of view.

Starting from this section, we will mostly be working in the world of DG
categories and DG functors between them. Whenever we write Hom, lim, colim,
etc. in such a category, we will always mean the DG version (e.g. Hom will take
values in Db Vect). We will use the following notation.

Notation. • Write OpenA for the (ordinary) category of open subsets of A.

• Write Ppre
A for the triangulated category of complexes of (covariant) rep-

resentations of OpenA in Db Vect. This is the derived category of the
category of copresheaves on A.

• Write AA for the category of cosheaves on A and

• CA = DbAA for its derived category.

• Write Ppre
J for the category of representations of J into Db Vect.

• Write AJ for the category of representations of J satisfying the condition
(∗) above (in Vect) and

• CJ for its derived category.
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Before proceeding, we need to make a technical point. Let Ctrue
J be the full

subcategory in PJ of functors C → Db Vect which satisfy condition (∗) for the
usual notion of colimit in the derived category. It will be more convenient for us
to think about objects of Ctrue

J than complexes of objects in CJ = DbAJ , but
for this we need to be sure that the two categories are equivalent. There is an
obvious functor Ftrue : CJ → Ctrue

J .

Lemma 6 (technical). The functor Ftrue above is an equivalence of DG cate-
gories.

This lemma follows from the following classical result from the theory of
DG categories relating the DG notion of a quasicoherent sheaf with the derived
category of the abelian category of quasicoherent sheaves.

Lemma 7 (classical). Let X be a smooth, finite-type algebraic variety with
an affine Zariski cover Ui ⊂ X, closed under intersection. Then the bounded
derived category of sheaves on X is equivalent to the category of collections Fi of
complexes of sheaves on Ui together with restriction maps Fi → Fj for Ui ⊃ Uj,
strictly compatible with composition, under the condition that all adjoint maps
Fi ⊗Oi Oj → Fj are quasiisomorphisms.

This follows from [TT], Theorem 2.4.3.

6.1 The functors Π∗ : CJ → CA, Π∗ : CA → CJ
Define a “pullback of opens” functor,

Π−1 : J → OpenA

which can be thought of as a map of topologies, since it takes diagrams of the
form (∗) above to infinite open covers in A (note that the notation is motivated
by topology: Π−1 is not invertible). Write Πpre

∗ : PA → PJ for the restriction
functor on representation categories associated to Π−1. From Observation 1, we
see that when applied to a real cosheaf, the functor Πpre

∗ satisfies our descent
condition and takes values in CJ . This means that we have a functor Π∗ : CX →
CJ , with Π∗(V)(Θ(Π, λ)) = Γ(V,Θ(Π, λ)), which fits into the following diagram.

CA
Π∗ - CJ

PA

φ

? Πpre
∗ - PJ .

φ

?

Since the functor Πpre
∗ , is a pullback functor of representation categories,

it has both right and left adjoints. We call its right adjoint functor Π∗pre (the
notation having opposite handedness from what we are used to for sheaves
and presheaves, since we’re working with cosheaf categories). The functor Π∗pre
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applied to an object V of CJ takes U ∈ Open(A) to the inverse limit of complexes
of vector spaces lim(σ,λ)|U⊂Θ(σ,λ) V(Θ(σ, λ)). The functor Π∗pre does not preserve
the property of being a cosheaf, so in order to get a functor to CA we need to
compose with the right adjoint to the forgetful functor φ : CA → PA, which (with
opposite handedness to the situation for sheaves) is the (derived) cosheafification
functor, shffX : PX → CX . This gives us the definition: Π∗ := shffX ◦Π∗pre. We
check that this is indeed a right adjoint

HomA(F ,Π∗G) ∼= HomA(F , shffΠ∗preφG) ∼= HomA,pre(φF ,Π∗preφG) (1)

∼= HomJ ,pre(Πpre
∗ φF , φG) ∼= HomJ (φΠ∗F , φG) (2)

∼= HomJ (Π∗F ,G), (3)

(where in the second-to-last equality we are using the commutative diagram
above, and in the last equality, we are using full faithfulness of the forgetful
functor φ).

7 Line bundles and local behavior of Π∗, Π∗

Here we will briefly recall the classification of equivariant line bundles on X,
and express them in terms of our Morelli topology model. Namely, let Σ1 be
the collection of rays in Σ. For each η ∈ Σ1, we parametrize the dual line
η∗ := ΛR/η

⊥ by R in such a way that points of η∗ parametrized by positive
numbers pair with positive points of η, and such that the lattice Λ/(Λ∩η⊥) ⊂ η∗
is identified with Z ⊂ R. Write ΩR :=

∏
η∈Σ1 η∗ and Ω ⊂ ΩR the lattice in

ΩR ∼= R|Σ
1|

consisting of tuples of integers (according to the parametrization
above). Then it’s a classical result that the equivariant Picard group of T -
equivariant line bundles on X is canonically Ω. For w ∈ Ω, write O(w) for the
corresponding bundle. We have a linear evaluation map ω : A → ΩR, sending
x 7→ (x mod η⊥1 , x mod η⊥2 . . .), which maps Λ into Ω. The image Λ ⊂ Ω under
this evaluation map consists of those line bundles that are twists of the trivial
bundle by torus characters.

Remark 2. There is a common reformulation of these spaces and maps in terms
of piecewise linear functions. Namely, ΩR is isomorphic to the vector space of
continuous functions f on NR which are linear on each cone. A function f
is in Ω if it takes integral values on N and the embedding ω of Λ in Ω is the
embedding of globally linear functions in piecewise linear ones. We choose not to
use this (admittedly, elegant) language in favor of the more explicit coordinates
as above.

Now for each w ∈ Ω and η ∈ Σ1, write Θw(η) for the half-space {x ∈ A | x
mod η⊥ ≥ wη}, and for σ ∈ Σ an arbitrary cone, write Θw(σ) for the affine
dual cone

⋂
η⊂σ Θw(η). When w ∈ Ω, the Θw(σ) are all objects of the Morelli

category J , and admit maps Θw(σ) → Θw(τ) whenever τ ⊂ σ. For Θ ∈ J an
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object, define CΘ ∈ CJ to be the right Yoneda functor

CΘ(Θ′) =

{
C, Θ′ ⊃ Θ

0, else.

For w ∈ Ω, define Cw = colimσ CΘw(σ) ∈ CJ , where the limit is taken over cones
in the fan ordered by reverse containment. Then it’s easy to see that the line
bundle O(w) corresponds to Cw under the correspondence of Theorem 5.

7.1 Local behavior of Π∗ and Π∗ on A
Suppose x ∈ A is a point. Let δx be the skyscraper sheaf at x. Then we compute

Π∗(δx)(Θ(σ, λ)) =

{
C, x ∈ Θ(Σ, λ)

0, else

Write ω(x)− ∈ Ω for the largest integral point w ∈ Ω which is strictly smaller
(coordinatewise) than ω(x). Then it’s clear that Θ(σ, λ) 3 x if and only if
Θ(σ, λ) ⊃ Θω(x)−(σ) in terms of the notation above. This gives us the end
result:

Lemma 8. We have
Π∗(δx) ∼= Cω(x)− .

Suppose now that F is an arbitrary sheaf on J , and we want to find the
costalk Π∗x(F) at x ∈ A1 of Π∗(F). Since the costalk is Hom(δx,Π

∗F), adjunc-
tion gives us Π∗x

∼= Hom(Π∗δx,Π
∗F), which, from the above Lemma, implies

Lemma 9.
Π∗x(F) ∼= HomCJ (Cω(x)− ,F).

This result implies that our functor Π∗ agrees (up to the Verdier corre-
spondence, 3 and a twist by an equivariant line bundle) with the functor κ in
[FLTZ1].

8 Faithfulness of Π∗

In this section we use a category-theoretic trick (explained to the author by
Roman Bezrukavnikov) to prove the following Lemma.

Lemma 10. The functor Π∗ : CJ → CA is fully faithful (as a functor of DG
categories).

In this section, we will use for the first time our hypothesis that X is proper.
Recall that an object X of a derived category C is compact if for any diagram
of objects D → C, taking Hom with X preserves colimit along D. Specifically:

∀D : I → C admitting a direct limit, we have

Hom(X, colimI(D)) = colimY ∈I(Hom(X,D(Y ))).

12



Recall also that a collection of objects Xi colimit generate a DG category C if
every object of C can be expressed as a colimit of the Xi. (Note that there are
different notions of DG generation and this is the strongest). Then we have the
following categorical proposition.

Proposition 11. Suppose F : C → D is a functor of DG categories that com-
mutes with colimits and Xi is a collection of compact objects that colimit gen-
erate C, such that F (Xi) are also compact. Then F is fully faithful if and only
if Fij : HomC(Xi, Xj) → HomD(F (Xi), F (Xj)) is a quasiisomorphism for all
pairs i, j.

Proof. For any pair of objects X,Y ∈ C, we can express X = limI Xi and
Y = limJ Xj . Then by compactness, Hom(F (X), F (Y ))

∼= colimIop Hom(F (Xi), F (Y )) (by colimit compatibility) (4)
∼= colimIop colimJ Hom(F (Xi), F (Yj)) (by compactness of F (Xi) ) (5)

∼= colimIop×J colim Hom(Xi, Yj) (by faithfulness on generators) (6)
∼= Hom(X,Y ) (by reverse arguments in C). (7)

We apply this proposition with F the functor Π∗ (which commutes with
colimits because it is given by a finite limit on the level of stalks, and colimits
commute with finite limits in pretriangulated DG categories) and the collection
of generators consisting of the objects Cw, corresponding to equivariant line
bundles O(w) via the correspondence of section 5. Since our fan is complete,
the cosheaves Π∗(Cw) are compactly supported with finite-dimensional fibers,
hence compact as objects of the category of cosheaves. That Π∗ is fully faithful
on the compact objects Cw follows from the result of [FLTZ1]. So in order to
apply the proposition and prove the lemma, it suffices to prove the following.

Proposition 12. The objects Cw colimit generate the DG category CJ .

This is equivalent to the statement that equivariant line bundles colimit-
generate Db coh(X)T . For σ ∈ Σ, let Oσ〈λ〉 (corresponding to Cσ,λ in notation
above) be the twist of the pushforward of the constant coherent sheaf OXσ to
X. (This quasicoherent sheaf is no longer coherent.) It is easy to see that these
sheaves DG generate Qcoh(X). (In the Morelli topology picture, they already
generate the presheaf category: this follows from the standard result that every
representation of a category J into Vect is a colimit of Yoneda representations
CX : Y 7→ C⊕Hom(X,Y ).) It remains to exhibit every pushforward bundle OXσ
as a limit of equivariant line bundles. It’s easy to see that a line bundle O(w)
maps to OXσ if and only if the coordinates wη corresponding to rays η ⊂ σ are all
≤ 0. It turns out we can simply take the colimit over all O(w) such that wη = 0
for η ⊂ σ: this can be shown either in the realm of geometry, or combinatorially
(note that such a statement would be false in the category RepJ : we need the
sheaf condition for it to be true). A sketch of the combinatorial proof is as
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follows. Note that Oσ is the sheaf C0(σ) (defined above). We need to show that
this is the direct limit of Cw where w ∈ Ω varies over Ω0/σ of all tuples such
that wi = 0 when ηi ∈ σ. Recall that Cw is a limit of Cw(σ). We can commute
the finite limit and the colimit past each other by first taking colimits of the
Cw(τ) components. Each of these is easily seen (using our descent condition)
to return Cσ∩τ . At the end of the day we are left with with limτ∈Σ Cσ∩τ for τ
ordered by opposite inclusion. Now we can further split this limit into pieces
along Σσ,σ′ := {τ ∈ Σ|τ ∩ σ = σ′} for σ′ varying over faces of σ. It’s not hard
to see that the cohomology of the diagram, limτ∈Σσ,σ′ C = C, and so we end up
with a limit over faces of σ ordered by opposite inclusion, which (as there is a
terminal object) returns Cσ, as desired.

This completes the proof of faithfulness of Π∗. Note that, since Π∗ is a
right adjoint, its full faithfulness implies that Π∗Π

∗ ∼= Id. (As we can write
Hom(Π∗Π

∗(X), Y ) ∼= Hom(Π∗(X),Π∗(Y )) ∼= Hom(X,Y ) by full faitfhulness,
and we are finished by Yoneda).

9 The composition Π∗Π∗

The paper [FLTZ1] proves that the extension by zero sheaves (jΘ(σ,λ))!(CΘ(σ,λ))
have singular support in LΣ. Dual arguments imply that the cosheaves Cσ,λ we
defined above have singular support contained in LΣ.

Definition 4. Write C(A,L) for the category of bounded complexes of cosheaves
with singular support contained in L.

Since (as we’ve shown in the previous section), the CΘ generate the image
of the functor Π∗, the functor Π∗ factors through a functor

κ∗ : Db Qcoh(X)T → C(A,L).

(Here we are identifying CJ with Db Qcoh(X)T by Theorem 5). Write similarly

κ∗ : C(A,L) → Db Qcoh(X)T

for the (left) adjoint, given by restricting Π∗ to C(A,L) ⊂ CA. It is clear that
κ∗κ

∗ ∼= Π∗Π
∗ ∼= IdDb Qcoh(X)T . To show that the other composition κ∗κ∗ is

also IdC(A,L)
, it remains to show that the composition Π∗Π∗ is equivalent to the

identity functor when restricted to cosheaves with singular support contained
in L.

Write M : CA → CA (M for monad) for the functor M := Π∗Π∗. Let α :
M → Id be the adjunction map, and let E := Cone(α) be the functor CA → CA
measuring the “error of Π∗ being the left inverse to Π∗”. We want to show that
E is the trivial functor when restricted to C(A,L). It suffices to show that its
fibers Ex = Cone(Mx → δx) : CA → Vect are trivial on C(A,L). We can compute
the fibers Mx using 7.1. We get that Mx(V) ∼= colimσ∈Σ Γ(Θω(x)−(σ),V). Now
we make the following claim.
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Lemma 13. The functor Hom(Cω(x)− ,−) on the category C(A,L) is equivalent to
the functor Hom(Cω(x)−ε,−) for any sufficiently small, positive (coordinatewise)
ε ∈ Ω.

Proof. We use the following proposition.
Recall (Definition 1) that the fiber of L over a point x ∈ A is the union of

cones σ ⊂ Λ∨R in the fan such that x mod σ⊥ is integral in the lattice Λ/(Λ∩σ⊥).
From this and the proposition we see that, for V with singular support contained
in L, the sections on the affine cone Γ(Θ(σ, x+ εv),V) do not change for small
ε unless there is a ray of the fan η ⊂ σ such that the coordinate x mod η⊥

is integral and v pairs positively with η. The lemma follows by decomposing
Cω(x)− into constant sheaves on cones, CΘω(x)−(σ) and observing that while
moving Θω(x)−(σ) to Θω(x)−ε(σ) linearly, the sections stay constant.

Now let C(A,strat) be the category of cosheaves stratified with respect to the

polyhedral Whitney stratification given by unions of the affine planes σ⊥ + λ.
The functor ι : C(A,strat) → CA has a right adjoint functor πstrat : CA → C(A,strat).
It is easy to see that the functor Π∗, hence also the functor M , factors as M =
Mπstrat. Hence we are reduced to proving that, for V ∈ C(A,strat), we have an
isomorphism of the fiber Vx ∼= colim Γ(Θω(x)−ε(σ),V). Since the colimit cosheaf
colimσ CΘω(x)−ε(σ) is supported on a small ball Bεx around x, we can replace the
homotopy colimit with colim Γ(Θω(x)−ε(σ) ∩ Bεx,V). But it’s clear that, for ε
sufficiently small and for V ∈ C(A,strat), the sections Γ(Θω(x)−ε(σ)∩Bεx,V) ∼= Vx
on these small convex open sets converge to the stalk. Thus we end up with

E(V)x ∼= Cone ((colimσ∈Σ Vx)→ Vx) .

Now since our fan is complete, we have colimσ∈Σ C ∼= C and so E(V)x ∼= Vx ⊗
Cone(C 1- C) ∼= 0. This implies that the functors κ∗, κ

∗ defined above
between Db QcohT (X) and CA,L are in fact inverse equivalences of categories,
completing the proof of Theorem 1.

10 Corollaries of Theorem 1

We will now use Theorem 1 to prove Theorem 2 and deduce Conjectures 1
and 2. Note that by Lemma 3, the category C(A,L) := DbAA,L of complexes
of constructible cosheaves on A with singular support in L is equivalent to the
category DbConstr−LΣ

of complexes of constructible sheaves with antipodal
singular support. This equivalence respects properties of compact support and
finite-dimensionality of stalks, and is compatible with the Λ-action. In particu-
lar, Conjectures 1 and 2 follow from the analogous statements about cosheaves,
which we prove in the remainder of this section.

We begin by getting rid of the properness condition on X. For this, note that
any smooth toric variety X has a smooth toric compactification X. Since open
pushforward is fully faithful (and this is true on the derived and equivariant
levels as well), we have j∗ : Db Qcoh(X)→ Db Qcoh(X) a fully faithful functor
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of DG categories. Now let Σ be the toric fan of X and Σ that of X. Write
L = ∪σ∈Σ,λ∈Λ(σ∨+λ)×σ ⊂ T ∗A, and write L = ∪σ∈Σ,λ∈Λ(σ∨+λ)×σ ⊂ T ∗A.
Then L ⊂ L, so the condition of singular support being contained in Σ is a
stronger condition than being contained in the larger Lagrangian variety Σ,
and since both are full subcategories of Db Constr(A), we see that the functor
CL → CL is a fully faithful functor of DG categories. Now it is clear that the
diagrams of functors

C(A,L)

κ∗- Db Qcoh(X) Db Qcoh(X)
κ∗- C(A,L)

C(A,L)

? κ∗- Db Qcoh(X),

?

Db Qcoh(X)

?
κ∗- C(A,L)

?

are commutative. Since the vertical arrows are fully faithful embeddings and
the bottom arrows are mutually inverse functors, it follows that the top arrows
are mutually inverse as well. This concludes the proof of Conjecture 2.

To get Conjecture 1, we use the following result. Suppose X is a variety
of finite type with T -action. Then the category of equivariant quasicoherent
sheaves Qcoh(X)T has (genuine) action by the group Λ := X∗(T ), given by
twisting by characters of the torus.

Lemma 14. 1. The category of Λ-equivariant objects in the abelian category(
Qcoh(X)T

)Λ
is equivalent to Qcoh(X) and

2. If X is smooth, the category of Λ-equivariant objects in the derived category(
Db Qcoh(X)T

)Λ
is equivalent to Db Qcoh(X).

Proof. We have a forgetful functor
(
Qcoh(X)T

)Λ → Qcoh(X)Λ, where the ac-
tion of Λ is trivial. Now the category Qcoh(X)Λ is the tensor-product category
Qcoh(X) ⊗ Rep(C[Λ]) ∼= Qcoh(X × T ). Let F be an object of Qcoh(X)Λ ∼=
Qcoh(X × T ), one checks combinatorially that of F to

(
Qcoh(X)T

)Λ
is equiva-

lent to a T -equivariant structure on F , where T acts on T ×X diagonally. Now
since T acts without fixed points on T ×X, a T -equivariant sheaf on X × T is
equivalent to a sheaf over X×T

T,∆ on the quotient by the diagonal action, which is
isomorphic to X. This completes the proof on the level of Abelian categories.
Applying the same arguments to the abelian category of complexes of sheaves
on X and checking the resulting functor respects quasiisomorphisms, we deduce
the analogous fact for derived categories.

It is clear from our construction that, under the functors Π∗,Π∗, twisting
an object of Qcoh(X)T by a character λ is intertwined with the “shift-by-λ”
functor on CA. Thus applying this to Conjecture 2, we see that

Db Qcoh(X) ∼=
(
Db Qcoh(X)T

)Λ ∼= Db ShΛ
A,L .
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But since the Λ action on A is free, this is equivalent to the categoryDb ShA/Λ,L/Λ .
This completes the proof of conjecture 2.

11 Concluding remarks and generalizations

Because of the formal nature of constructions in this paper, we see that they
easily generalize in certain natural ways.

11.1 Z coefficients

In our generator and relation presentation for Qcoh(X)T , the relations had no
addition or scaling. This means that we can define the functors Π∗,Π∗ with
coefficients in Z, and the results of this paper will go through verbatim. This
gives us the following result.

Theorem 15. Conjectures 1 and 2 hold with coefficients in Z (hence over an
arbitrary ring).

Remark 3. In fact, it seems that with a little bit of bookkeeping, we can make
this result hold over the sphere spectrum, S, where we define the category QcohS

as collections of topological spectra Vλ,σ satisfying the relations of Theorem 5,
and the category C(A,L,S) is defined as the category of cosheaves of spectra on A
whose sections satisfy the condition of Definition 1. We will not give a proof
here.

11.2 Finiteness and compact support

Suppose that X is smooth and compact. Then we observe that the equiv-
alence constructed between C(A,L) and Db QcohT (X) sends objects of C(A,L)

whose cohomology sheaves are compactly-supported and have finite-dimensional
stalks to complexes of T -equivariant sheaves on X with coherent cohomology,
and vice versa, and thus defines an equivalence of the corresponding cate-
gories. Similarly, the non-equivariant equivalence CΛ

(A,L)
∼= Db Qcoh(X) sends

complexes of sheaves with finite-dimensional fibers to complexes of coherent
sheaves, and vice versa, and thus gives a constructible model for the category
Perf(X) ∼= Db coh(X).

11.3 Additional symmetries of the fan

Suppose that we have an additional finite group of symmetries W acting on
the lattice Λ∨, in a way which permutes cones of the fan Σ. Then we have an
induced (genuine) action of W on the category coh(X). We have the following
generalization of Conjecture 1.

Theorem 16. We have an equivalence of derived categories between the category
Db Qcoh(X)W of W -equivariant complexes of sheaves on X and the category
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CΛnW
(A,L) of Λ n W -equivariant complexes of constructible cosheaves on A with

singular support contained in A (and an analogous result holds for sheaves).

This follows from modifying Lemma 14 to get a derived equivalence between

W -equivariant complexes of sheaves onX and the categoryDb
(
Qcoh(X)T

)ΛnW
.

From this we get the following remarkable corollary.

Corollary 17. Let W be a finite group acting on a lattice Λ (possibly with

stabilizer at every point). Write W̃ for the semidirect product Λ nW. For any

point x ∈ Λ ⊗ R, write Wx for the stabilizer of x under the action of W̃ (for

example W0
∼= W ). Then any finitely-generated representation of W̃ has a

finite resolution by direct sums of representations of the form IndW̃Wx
V for V a

finite-dimensional representation of Wx.

Proof. Let T be the torus Spec(C(Λ)), viewed as a smooth toric variety with
W -action, and choose a smooth W -equivariant compactification X of T . Let V
be a finitely-generated representation of W̃ . The category of finitely-generated
sheaves on W̃ is equivalent to the category of W -equivariant coherent sheaves on
T . It is possible to extend any W -equivariant coherent sheaf on T to a coherent
sheaf on X in a W -equivariant way. Call F such an extension of the coherent
sheaf corresponding to V . Then from Theorem 16 and the finite-dimensionality
statement of section 11.2, we see that F is represented by a finite W̃ -equivariant
complex of sheaves V := κ∗A(F) on A/Λ with finite-dimensional stalks, and
constructible with respect to a polyhedral stratification (with convex polyhedral

cells) of A/Λ which is compatible with W̃ -action. Now tracing through our
arguments, the representation V (corresponding to the restriction of F to T , and

viewed as a complex in degree 0), is given by RΓcosheaf(A,V) (with induced W̃ -

action). Now note that there are finitely many W̃ -orbits of convex k-dimensional

cells D
(k)
i in A. Pick a point x

(k)
i ∈ D(d)

i . Let V
(k)
i be the stalk of V at x

(k)
i ,

viewed as a complex of representations of W
x

(k)
i

. Then we have coboundary
maps

dk,k+1 :
⊕
i

IndW̃W
x
(k)
i

V
(d)
i →

⊕
j

IndW̃
W

(k+1)
xi

V
(d+1)
i

(induced by cospecialization of stalks). These form a bicomplex of W̃ -modules
with global sections V , completing our proof.
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