Math 104 Homework 9 (Vaintrob)

Due Tuesday, $4 / 2$

1 Reading Exercise 1

Repeat example 3 (chapter 20) to (rigorously) find the derivative of \sqrt{x} at π, i.e. $\lim _{x \rightarrow \pi} \frac{\sqrt{x}-\sqrt{\pi}}{x-\pi}$.

2 Reading Exercise 2

The limit of a function f at a real number a (on the boundary of its domain) exists and equals L if and only if f can be extended to a continuous function \tilde{f} on $\operatorname{Dom}(f) \cup\{a\}$ with $\tilde{f}(a)=L$ (see Theorem 19.5). Using this, quickly re-prove Corollary 20.8 (without using Theorem 20.6) using the $\epsilon-\delta$ notion of continuity.

3 Reading Exercise 3

(a) Suppose $f(x)$ is a continuous function on the interval $[a, b]$ and $g(x)$ is a continuous function on the interval $[b, c]$, such that $f(b)=g(b)$ (equal to some value L, say). Show that the function defined by

$$
\tilde{f}(x):= \begin{cases}f(x) & x \in[a, b] \\ g(x) & x \in[b, c]\end{cases}
$$

is continuous on the interval $[a, c]$.
(b) Now, look at the condition on $f(x)$ after the "if and only if" statement in Theorem 20.10 (very top of p. 161). The statement $\lim _{x \rightarrow a^{-}} f(x)=L$ is equivalent to saying that the function $f(x)$ to the left of a extends to a continuous function on $x \in J \mid x \leq a$, with value L at a. The statement $\lim _{x \rightarrow a^{+}} f(x)=L$ is equivalent to a similar statement for values to the right
of a (you are allowed to use these facts). Deduce that the two conditions together are equivalent to requiring that $f(x)$ extends to a continuous function on all of J. (This line of argument can be continued to give an alternative proof of theorem 20.10.)

$4 \quad 19.2$

$5 \quad 19.8$
$6 \quad 20.11$
$7 \quad 20.17$

