Math 104 Homework 1 (Vaintrob)

Due Thursday, $1 / 31$, reading exercises due earlier

1 Exercise 4.1, 4.2

left column: (a, c, e, g, i, k, m, o, q, s, u, w)

2 Exercise 4.1, 4.2

left column

3 Exercises 4.6, 4.7

4 Exercise 5.3

left column

$5 \quad 6.1$

6 Challenge problem

You can choose to do this instead of any three of the above.
Say $\left(s_{1}, s_{2}, \ldots\right)$ is a sequence of distinct points in the interval $[0,1]$. Show that there is a "subsequence" $\left(t_{1}, t_{2}, t_{3}, \ldots\right)$ such that each t_{i} is one of the s_{j} and such that the t_{i} have a limit.

Hint: part 1: split the interval into two pieces $[0,1 / 2]$ and $[1 / 2,1]$. Since there are infinitely many distinct points s_{i}, there must either be infinitely many points with first binary digit 0.0 or infinitely many points with first binary digit 0.1 . Make a similar argument to get infinitely many elements with the same first two digits, then three digits, etc. This lets you generate all (infinitely many) digits of a binary number, b between 0 and 1 .

Part 2. Now find some subsequence $\left(t_{1}, t_{2}, \ldots\right)$ such that t_{1} has the same first digit as b, such that t_{2} has the correct first two digits as b, etc. Finally show that the limit of t_{1}, t_{2}, \ldots is b.

