Math 104 Homework 1 (Vaintrob)

Due Thursday, 1/31, reading exercises due earlier

1 Exercise 4.1, 4.2

left column: (a, c, e, g, i, k, m, o, q, s, u, w)

2 Exercise 4.1, 4.2

left column

3 Exercises 4.6, 4.7

4 Exercise 5.3

left column

$5 \ 6.1$

6 Challenge problem

You can choose to do this instead of any three of the above.

Say $(s_1, s_2, ...)$ is a sequence of distinct points in the interval [0, 1]. Show that there is a "subsequence" $(t_1, t_2, t_3, ...)$ such that each t_i is one of the s_j and such that the t_i have a limit.

Hint: **part 1**: split the interval into two pieces [0, 1/2] and [1/2, 1]. Since there are infinitely many distinct points s_i , there must either be infinitely many points with first binary digit 0.0 or infinitely many points with first binary digit 0.1. Make a similar argument to get infinitely many elements with the same first two digits, then three digits, etc. This lets you generate all (infinitely many) digits of a binary number, b between 0 and 1. **Part 2.** Now find some subsequence $(t_1, t_2, ...)$ such that t_1 has the same first digit as b, such that t_2 has the correct first two digits as b, etc. Finally show that the limit of $t_1, t_2, ...$ is b.