Math 104 Homework 1 (Vaintrob)

Due Thursday, 1/31, reading exercises due earlier

Reading Exercises due Thursday, 1/24. p. 10: without looking ahead, take a few minutes to think about how you would prove Example 2. Reformulate the statement " $\sqrt{2}$ is irrational" as a logical statement. Try to formulate it using only integers. Hint: the statement should start "there does not exist ...".

Due Tuesday, 1/26. p. 13-14: remember that axioms are supposed to hold for *any* choice of variables. In the case of axioms A1-A4, M1-M4, and DL, the variables are rational numbers. Plug in some random simple rational values (like 2/3) for the variables a, b, c in each part and check that each axiom holds. Remember that since you're looking at this like a logic machine, you need to evaluate each expression in parentheses first (a lot of these calculations will be pretty stupid: don't worry).

p. 14 For axiom O5, what are the two conditions $a \leq b$ and $0 \leq c$ for? Try an example where first the first, then the second condition doesn't hold and see if it makes the conclusion false. Also: is this result true for any a, b, c if you strengthen the \leq signs to strict < signs?

1 Exercise 2.8.

Find all rational solutions of the equation $x^8 + 4x^5 + 13x^3 - 7x + 1 = 0$.

Exercise 3.1
Exercise 3.3
Exercise 3.4
Exercise 3.6
Exercise 3.7
7

Write down the Rational Zeroes Theorem in the book and deduce the *monic* version from the first class, which is Corollary 2.3 ("corollary" means "consequence"). See if you can do this without looking at the proof in the book.

8

This problem is worth two regular problems. Say a number x satisfies a polynomial equation none of whose coefficients are rational. Can x be algebraic? Can it be rational? (Give examples.) Can you find a monic polynomial with some transcendental (i.e. non-algebraic) coefficients which has an algebraic solution? Hint: π, π^2 are both transcendental numbers.

9 "Complex rational numbers".

This problem is worth two regular problems: Let $\mathbb{C}_{rat} := \{a + bi \mid a, b \in \mathbb{Q}\}$ be the set of complex rational numbers whose coordinates are rational. Write down how to multiply and add two elements a + bi and a' + b'i of \mathbb{C}_{rat} . I claim this is a field (i.e. satisfies axiosm A, M, DL on pages 13-14). You're welcome to check all of them, but for this problem check just axioms M1, M4 and DL.

10 Challenge problem

(you can choose to do this one instead of five regular problems of your choice. This problem is harder but a useful problem to do if you are an advanced student) Define \mathbb{H}_{rat} to be the "rational quaternions", symbols of

the form a * e + bi + cj + dk for a, b, c rational numbers. These elements are added like vectors with basis $\hat{1}, i, j, k$ (similar to how complex numbers are added like vectors with basis $1, i - \Gamma$ 'm using $\hat{1}$ instead of 1 to avoid confusion of vectors with scalars). Now define multiplication on the basis vectors as follows: $\hat{1} * x = x$ (for x any basis vector); $i^2 = j^2 = k^2 = -\hat{1}$ (we define $-\hat{1} := (-1) * \hat{1}$) and ij = k, ji = -k, jk = i, kj = -i, ki = j, ik =-j. Use axiom DL to guess a multiplication law on any pair of vectors $(a\hat{1}+bi+cj+dk)(a'\hat{1}+b'i+c'j+d'k)$. Check that this satisfies the associativity axiom M1. Check that $(a\hat{1}+bi+cj+dk)(a\hat{1}-bi-cj-dk) = (a^2+b^2+c^2+d^2)\hat{1}$ (note that in the second factor, we just changed the signs of all coordinates but the "ones" coordinate. Compare to multiplying a complex number by its conjugate). Deduce that axiom M4 holds, i.e. for each $a \neq (0,0,0,0) \in \mathbb{H}_{rat}$, there is an element a^{-1} such that $aa^{-1} = \hat{1}$. In fact, all the field axioms hold except for the *commutativity* axiom M2, and number systems like \mathbb{H}_{rat} are called *skew-fields*.