
Worksheet 9: the Riemann Mapping Theorem.

April 29, 2020

1 Introduction

Suppose Ω is the interior of a simple closed curve. We will construct a bijective,
holomorphic map F : Ω→ D1 to the unit disk, proving that they are conformally
equivalent. Of course this implies that any two such domains are conformally
equivalent: if Ω,Ω′ are two domains with F : Ω → D, G : Ω → D the relevant
maps then G−1 ◦ F : Ω→ Ω′ is also a conformal equivalence.

Remark 1. In fact, this statement can be made stronger. It turns out that a
domain Ω ⊂ C is conformally equivalent to the disk D so long as it is

• Simply connected (every loop can be contracted without passing through a
“hole” of Ω) and

• A proper open subset: i.e., not C itself.

We do not use this level of generality here, though this is what the book does.
Why is this so strong? We have seen earlier that C is not conformally

equivalent to D : indeed, any holomorphic map C→ D is constant by Liouville,
so why does properness and simple connectedness guarantee what we need?

Intuitively, if Ω ⊂ C is a proper subset then there is some point z0 in C
which is not in Ω. Now just removing z0 or a bounded set containing z0 will
result in a non-simply connected region (there will be a large loop with z0 in its
interior, hence non-contractible). Therefore “at minimum” one needs to remove
z0 and at least one point of every circle containing z0: a “minimal” such set
to remove is an infinite ray from z0 in some complex direction (“going towards
infinity”). Now, the complement of a ray is actually equivalent to the upper
half-plane (take a branch of the square root function, after an appropriate shift.)
The upper half-plane is then conformally equivalent to the disk, as we’ve seen.
A procedure like this (involving a logarithmic derivative) works to convert any
proper simply connected domain into something bounded and simply connected.
The astute reader will notice that our proof for interioros of curves in fact works
for anything bounded and simply connected. (See book for details.)

We have the following facts at our disposal, from the last two lectures.
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• For any sequence F1, F2, . . . with Fk : Ω → C holomorphic maps, if the
Fk are uniformly bounded then there exist integers n1, n2, . . . , such that
the sequence Fn(1), Fn(2), . . . converges locally uniformly to a limit F .

• Moreover F is holomorphic with derivative equal to the limit of derivatives
of the Fn.

• If the Fn are injective and F is non-constant then F is also injective.

We also have the following fact from the last worksheet: if F : D → D
is a function from the disk to itself then |F ′(0)| ≤ 1, and in case of equality
|F ′(0)| = 1 then F is a bijection. This suggests that in order to find a bijection
F : Ω→ D, we should look for the map with maximal derivative at some interior
point.

So fix a point z0 ∈ Ω. We will look for maps Ω→ D which take z0 to 0. This
may seem like an restriction: surely if z0 is not “in the middle” of Ω in some
sense it should not go to the center of the disk under a conformal equivalence.
But it turns out that if any conformal equivalence exists, there is one that takes
z0 to 0, as can be seen by composing with a “standard” conformal equivalence
between D and itself.

Question 1. Recall that for any α, the function fα : z 7→ z−α
ᾱz−1 is an equivalence

from D to itself. Deduce that if there is an equivalence F0 : Ω→ D sending z0 to
λ, it can be composed with some fα to get a conformal equivalence F : Ω → D
sending z0 to 0.

2 Constructing a sequence of embeddings

We will construct a sequence of holomorphic injective maps Fn : Ω→ D which
send z0 to 0 and “fill out more and more space” in the circle. The best stand-in
for “amount of space” in a conformal context will be the absolute value of the
derivative.

We begin with a linear map F0 defined as follows.

Question 2. Show that there is a real number b > 0 such that the map F0 : z 7→
b(z − z0) takes every point of Ω to a point of D. Show that F0 is an injection
and takes z0 to 0.

Intuitively F0 shifts Ω, then shrinks it to fit inside the unit circle. The
derivative |F ′0(z0)| is of course b (same as its derivative at any other point).

Now let S be the set of injective holomorphic functions which take z0 to 0,
so

S = {f : Ω→ D | f holomorphic, injective and f(z0) = 0.

By our construction of F0 above, S is nonempty. We have a function D : S → R
given by D(f) := |f ′(z0)|. The function D is bounded by Cauchy’s inequality.
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Question 3. If you are not comfortable with Cauchy’s inequality, show using
a contour integral that for f a holomorphic function on Ω, we have |f ′(z0)| ≤
Cmaxζ∈Cr(z0)|f(ζ)|, for Cr a fixed circle around z0 fully contained in Ω and
C > 0 some constant. Deduce that if the image of f is in the unit disk D1, then
|f ′(z0)| ≤ 1

C .

Write the set of absolute derivatives D := {D(f) | f ∈ S} ⊂ R is an
upper-bounded, nonempty set of positive real numbers with some nonzero b =
D(F0) > 0 in D. Knowing what we know about real numbers, we see that there
is a supremum d = SupD such that 0 < d <∞.

Now our strategy of proof is as follows.

Lemma 1. Prove that D contains its supremum, i.e., there is some function
F ∈ S such that |F ′(0)| is maximal possible.

Lemma 2. Prove that if F : Ω → D is a function in S (so: holomorphic,
injective, with F (z0) = 0) whose derivative at z0 is the maximal possible, then
F is bijective, hence the desired conformal mapping.

Proof of Lemma 1. Let d1, d2, . . . be a set of numbers in D whose limit is d.
By definition of D, there are functions Gn in S with |G′n(0)| = dn.

Now the analysis tools we’ve developed give us precisely what we need:

Question 4. Show that there exists a subsequence F1, F2, . . . of the Gn which
converges locally uniformly to a function F , and F is in S, with F ′(z0) = d.
(Hint: first show that F (z0) = 0 and F ′(z0) = r. Now remember that the limit
of a sequence of injective holomorphic functions is either injective or constant.
Why is F not constant?)

This concludes the proof of Lemma 1.
Now we prove Lemma 2. We want to show that F is a holomorphi bijection.

We already know F is holomorphic and injective, so it remains to prove sur-
jectivity, i.e. that for every point w ∈ D of the disk, there is some z ∈ Ω with
F (z) = w.

We will use a neat argument to show that if F is not surjective then we can
modify it to another function G : Ω → D which has larger absolute value of
derivative at 0.

Indeed, assume for the sake of contradiction w ∈ D be a point that is
“missed” by F .

To construct G we use the following procedure.

Question 5. 1. First, compose F : Ω→ D with a conformal automorphism
fα : D→ D such that 0 is not in the image of F1 := fα ◦ F . (Hint: move
w to 0).

2. Since Ω is simply connected and F1 is holomorphic and nonzero, convince
yourself that we can find a holomorphic function logF1 : Ω→ C satisfying
exp(logF1)(z) = F1(z) for all z.

3



We have seen one way to do this: take F1 to be an antiderivative of the

logarithmic derivative,
F ′

1

F1
. Use Cauchy’s theorem on antiderivatives to see

this antiderivative exists. This is where we’re using that Ω “has no holes”
(otherwise an antiderivative might not exist.)

3. Define a new function F2 := exp( logF1

2 ), which satisfies F 2
2 (z) = F1 for

all z.

4. Now compose with another fractional linear automorphism fβ from D to
itself to get a function G = fβ ◦ F2 satisfying G(z0) = 0.

5. At the end of the day, we have made sense of G as G(z) = fβ ◦
√
F ◦ fα,

as a well-defined function Ω→ F. Show that G is injective (hint: use that
if F2(z) = F2(z′) then F 2

2 (z) = F 2
2 (z′).)

6. Verify the relationship
G = Φ ◦ F

where Φ(z) = f−1
β ◦ sq ◦ f−1

β , with sq(z) := z2 is the squaring function.

Check that the function Φ is a non-injective function from D to D with
Φ(0) = 0. We deduce that |Φ′(0)| < 1.

7. Finally, apply the chain rule at 0 the formula G = Φ ◦ F to deduce that
|G′(0)| > |F ′(0)|, contraduction.

If Ω is a domain (or a more general surface), a conformal automorphism of
Ω is a (bijective) conformal mapping α : Ω → Ω. We will start this section
by constructing a family of conformal automorphisms of the unit disk, start-
ing from the family of fractional linear automorphisms of the upper half-plane
constructed in the last official worksheet. Then we will show that there are no
others.

Recall that the disk is conformally equivalent to the upper half-plane: let

D := {z | |z| < 1}

be the open unit disk as usual and

H := {z | Im(z) > 0}

be the open upper half-plane. Then in the previous worksheet we have con-
structed a map F : H → D given by F : z 7→ −z+i

z+i . Its inverse is the map

F : D→ H given by w 7→ i 1−w
1+w .

Question 6. Show that if f : D→ D is a conformal automorphism of the disk
then G ◦ f ◦ F is a conformal automorphism of the plane. And conversely, if
g : H → H is a conformal automorphism of the plane then f := F ◦ g ◦ G is
a conformal automorphism of the disk. Therefore conformal automorphisms of
the disk and of the plane are determined by the same data.
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Recall that the fractional linear transformation g : z 7→ az+b
cz+d is a conformal

automorphism of H if and only if a, b, c, d are real and the determinant

∣∣∣∣a b
c d

∣∣∣∣ > 0

is positive. (Recall also that two fractional linear transformations are equal if
and only if the resulting matrices differ by a nonzero scalar).

Question 7. Show that if g(z) := az+b
cz+d is a fractional linear automorphism of

H as above, then the automorphism f := F ◦ g ◦G of the disk can be rewritten
as eiθ · α−z1−ᾱz , for some θ ∈ R, α ∈ C (depending on a, b, c, d).
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Now there is no obvious reason why there cannot be other conformal auto-
morphisms of the disk to itself. However, it turns out that every automorphism
takes the above form (this implies that every automorphism of the upper half
plane is of the form specified... why is this implication true?)

To see this, we need the following result.

Question 8. (a) Show that every map f : D → D satisfies |f ′(0)| ≤ 1, and if
in addition |f ′(0)| = 1, then f(z) = eiθz for some θ.

Hint. Note that this follows from one of the problems on the Riemann
inequalities: namely, f ′(0) can be computed as a Riemann integral over a unit

circle, and is therefore bounded by maxz∈Cr

|f(z)|
r . Equality is attained if and

only if the integral computing f ′(0) integrates a constant function. On the other
hand, |f(z)| < 1 for all z. You should be able to finish this by taking the r → 1
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limit.
(b) Show that every automorphism f : D → D with f(0) = 0 satisfies

|f ′(0)| = 1. Hint: use that f has a compositional inverse f−1 and the chain

rule gives
(
f−1

)′
(0) = 1

f ′(0) .

Together the two parts of the last problem imply that every automorphism
of the disk which takes 0 to 0 is given by f(z) = eiθz, for some θ.

Now we can start with any automorphism of the disk and compose with one

7



of our fractional linear transformations to get a new automorphism of the disk,
as follows.

Question 9. Suppose f : D → D is an automorphism of the disk. Show that
f ◦ fα takes 0 to 0, where fα(z) = α−z

1−ᾱz , and α = f−1(0) (using compositional

inverse for f−1 this exists since f is a bijection).

Question 10. (a) Deduce that every automorphism of the disk is given by eiθ·fβ ,
for fβ : z 7→ β−z

1−β̄z , similar to the above.

(b) Deduce also that every automorphism of the upper half-plane H is given
by a fractional linear transformation az+b

cz+d (with real coefficients and positive
determinant), as above. Hint: use F,G from the first question.
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