Worksheet 6: Counting zeroes and poles on functions in a sphere, I.

April 19, 2020

1 Conformal functions and the argument principle

Last time we proved the following theorem, which states that the integral of $\frac{f'}{f}$ around a contour is equal to $2\pi i$ times the number of zeroes minus the number of poles of f in this contour, counted with multiplicity (so a zero of multiplicity n contributes +n while a pole of order n contributes -n). Today we will combine this with the Riemann sphere S^2 .

Recall that if $\Omega \subset \mathbb{C}$ is a domain in \mathbb{C} , then a function $f : \Omega \to S^2$ is equivalent to a *meromorphic* function on F on Ω , i.e. a function all of whose singularities are poles, with the added restrictions that all poles are of first order (equivalently, simple) and at points which are not poles, f has non-zero derivative. The functions F and f are related using the stereographic projection: so

$$f(z) = \begin{cases} P_N^{-1} \left(F \left(z \right) \right), & F \text{ defined at } z \\ P_N & z \text{ a pole of } F. \end{cases}$$

Counting zeroes and infinities of a meromorphic function can be translated to counting the number of times the corresponding function to the Riemann sphere crosses the North pole N (corresponding to ∞) or the South pole S (corresponding to 0).

Question 1. Suppose F, f are related as above, for $f : \tilde{\Omega} \to S^2$ conformal. Suppose γ is a simple closed curve in $\tilde{\Omega}$ and its interior $\Omega = \text{Int}(\gamma)$ is contained in $\tilde{\Omega}$. Suppose also that F has neither zeroes nor poles on γ (but may have either in its interior).

Show that $\frac{1}{2\pi i} \oint_{\gamma} \frac{F'}{F}(z) dz$ is equal to $|\Omega \cap f^{-1}(S)| - |\Omega \cap f^{-1}(N)|$, i.e., the number of preimages of the South pole minus the number of preimages of the North pole inside the interior of γ .

2 Holomorphic functions to the sphere

Remember that conformal functions are *almost* the same thing as holomorphic functions: there is just an extra pesky bit involving nonzero derivatives. It turns out that if we allow "singularities" in our conformal condition on functions, i.e. isolated points $p \in \Omega$ where the function is still continuous, but such that f might not preserve angles between curve starting at p, then we get back the condition of holomorphicity. We will not prove this here, but instead use a consequence of such a train of thought as a definition:

Definition 1. A holomorphic function from a domain $\Omega \subset \mathbb{C}$ to the sphere S^2 is a function $f : \Omega \to S^2$ obtained from a meromorphic function $F : \Omega \to \mathbb{C}$ by defining

$$f(z) := \begin{cases} P_N^{-1} F(z), & F \text{ is defined at } z \\ N, & F(z) = \infty. \end{cases}$$

The difference of this definition from our conformal definition is that we no longer impose any conditions on F other than meromorphicity (so no longer requiring nonzero derivative or simple poles).

Question 2. Show that a holomorphic function f to S^2 defined using definition 1 above is continuous (i.e., $\lim f(z_n) = f(\lim z_n)$, if the limit exists).

Now we can also define a *holomorphic* function from a sphere to a sphere.

Definition 2. This is a function $f: S^2 \to S^2$ such that the two compositions $f \circ P_N^{-1}: \mathbb{C} \to S^2$ and $f \circ \overline{P}_S^{-1}: \mathbb{C} \to S^2$ are holomorphic (in terms of the above definition).

Question 3. Show that a holomorphic function f to S^2 defined using definition 2 above is continuous (i.e., $\lim f(\vec{v}_n) = f(\lim \vec{v}_n)$, if the limit exists).

Question 4. Describe the (unique) function $f : S^2 \to S^2$ such that (after converting to a meromorphic function $\mathbb{C} \to \mathbb{C}$ using stereographic projection), the resulting function is $f(z) = z^2$. Show that this function is not conformal precisely at 0 and ∞ .

