Worksheet 6: Counting zeroes and poles on functions in a sphere, I.

April 19, 2020

1 Conformal functions and the argument principle

Last time we proved the following theorem, which states that the integral of $\frac{f^{\prime}}{f}$ around a contour is equal to $2 \pi i$ times the number of zeroes minus the number of poles of f in this contour, counted with multiplicity (so a zero of multiplicity n contributes $+n$ while a pole of order n contributes $-n$). Today we will combine this with the Riemann sphere S^{2}.

Recall that if $\Omega \subset \mathbb{C}$ is a domain in \mathbb{C}, then a function $f: \Omega \rightarrow S^{2}$ is equivalent to a meromorphic function on F on Ω, i.e. a function all of whose singularities are poles, with the added restrictions that all poles are of first order (equivalently, simple) and at points which are not poles, f has non-zero derivative. The functions F and f are related using the stereographic projection: so

$$
f(z)= \begin{cases}P_{N}^{-1}(F(z)), & F \text { defined at } z \\ P_{N} & z \text { a pole of } F\end{cases}
$$

Counting zeroes and infinities of a meromorphic function can be translated to counting the number of times the corresponding function to the Riemann sphere crosses the North pole N (corresponding to ∞) or the South pole S (corresponding to 0).
Question 1. Suppose F, f are related as above, for $f: \tilde{\Omega} \rightarrow S^{2}$ conformal. Suppose γ is a simple closed curve in $\tilde{\Omega}$ and its interior $\Omega=\operatorname{Int}(\gamma)$ is contained in Ω. Suppose also that F has neither zeroes nor poles on γ (but may have either in its interior).

Show that $\frac{1}{2 \pi i} \oint_{\gamma} \frac{F^{\prime}}{F}(z) d z$ is equal to $\left|\Omega \cap f^{-1}(S)\right|-\left|\Omega \cap f^{-1}(N)\right|$, i.e., the number of preimages of the South pole minus the number of preimages of the North pole inside the interior of γ.

2 Holomorphic functions to the sphere

Remember that conformal functions are almost the same thing as holomorphic functions: there is just an extra pesky bit involving nonzero derivatives. It turns out that if we allow "singularities" in our conformal condition on functions, i.e. isolated points $p \in \Omega$ where the function is still continuous, but such that f might not preserve angles between curve starting at p, then we get back the condition of holomorphicity. We will not prove this here, but instead use a consequence of such a train of thought as a definition:

Definition 1. A holomorphic function from a domain $\Omega \subset \mathbb{C}$ to the sphere S^{2} is a function $f: \Omega \rightarrow S^{2}$ obtained from a meromorphic function $F: \Omega-\rightarrow \mathbb{C}$ by defining

$$
f(z):= \begin{cases}P_{N}^{-1} F(z), & F \text { is defined at } z \\ N, & F(z)=\infty\end{cases}
$$

The difference of this definition from our conformal definition is that we no longer impose any conditions on F other than meromorphicity (so no longer requiring nonzero derivative or simple poles).
Question 2. Show that a holomorphic function f to S^{2} defined using definition 1 above is continuous (i.e., $\lim f\left(z_{n}\right)=f\left(\lim z_{n}\right)$, if the limit exists).

Now we can also define a holomorphic function from a sphere to a sphere.
Definition 2. This is a function $f: S^{2} \rightarrow S^{2}$ such that the two compositions $f \circ P_{N}^{-1}: \mathbb{C} \rightarrow S^{2}$ and $f \circ \bar{P}_{S}^{-1}: \mathbb{C} \rightarrow S^{2}$ are holomorphic (in terms of the above definition).

Question 3. Show that a holomorphic function f to S^{2} defined using definition 2 above is continuous (i.e., $\lim f\left(\vec{v}_{n}\right)=f\left(\lim \vec{v}_{n}\right)$, if the limit exists).
目

Question 4. Describe the (unique) function $f: S^{2} \rightarrow S^{2}$ such that (after converting to a meromorphic function $\mathbb{C} \rightarrow \mathbb{C}$ using stereographic projection), the resulting function is $f(z)=z^{2}$. Show that this function is not conformal precisely at 0 and ∞.

