
Worksheet 6: Counting zeroes and poles on

functions in a sphere, I.

April 19, 2020

1 Conformal functions and the argument prin-
ciple

Last time we proved the following theorem, which states that the integral of f ′

f
around a contour is equal to 2πi times the number of zeroes minus the number of
poles of f in this contour, counted with multiplicity (so a zero of multiplicity n
contributes +n while a pole of order n contributes −n). Today we will combine
this with the Riemann sphere S2.

Recall that if Ω ⊂ C is a domain in C, then a function f : Ω → S2 is
equivalent to a meromorphic function on F on Ω, i.e. a function all of whose
singularities are poles, with the added restrictions that all poles are of first
order (equivalently, simple) and at points which are not poles, f has non-zero
derivative. The functions F and f are related using the stereographic projection:
so

f(z) =

{
P−1
N (F (z)) , F defined at z

PN z a pole of F.

Counting zeroes and infinities of a meromorphic function can be translated
to counting the number of times the corresponding function to the Riemann
sphere crosses the North pole N (corresponding to ∞) or the South pole S
(corresponding to 0).
Question 1. Suppose F , f are related as above, for f : Ω̃ → S2 conformal.
Suppose γ is a simple closed curve in Ω̃ and its interior Ω = Int(γ) is contained
in Ω̃. Suppose also that F has neither zeroes nor poles on γ (but may have either
in its interior).

Show that 1
2πi

∮
γ
F ′

F (z)dz is equal to |Ω ∩ f−1(S)| − |Ω ∩ f−1(N)|, i.e., the
number of preimages of the South pole minus the number of preimages of the
North pole inside the interior of γ.
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2 Holomorphic functions to the sphere

Remember that conformal functions are almost the same thing as holomorphic
functions: there is just an extra pesky bit involving nonzero derivatives. It turns
out that if we allow “singularities” in our conformal condition on functions, i.e.
isolated points p ∈ Ω where the function is still continuous, but such that f
might not preserve angles between curve starting at p, then we get back the
condition of holomorphicity. We will not prove this here, but instead use a
consequence of such a train of thought as a definition:
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Definition 1. A holomorphic function from a domain Ω ⊂ C to the sphere S2

is a function f : Ω → S2 obtained from a meromorphic function F : Ω− → C
by defining

f(z) :=

{
P−1
N F (z), F is defined at z

N, F (z) =∞.

The difference of this definition from our conformal definition is that we no
longer impose any conditions on F other than meromorphicity (so no longer
requiring nonzero derivative or simple poles).
Question 2. Show that a holomorphic function f to S2 defined using definition
1 above is continuous (i.e., lim f(zn) = f(lim zn), if the limit exists).
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Now we can also define a holomorphic function from a sphere to a sphere.

Definition 2. This is a function f : S2 → S2 such that the two compositions
f ◦P−1

N : C→ S2 and f ◦ P̄−1
S : C→ S2 are holomorphic (in terms of the above

definition).

Question 3. Show that a holomorphic function f to S2 defined using definition
2 above is continuous (i.e., lim f(~vn) = f(lim~vn), if the limit exists).

Question 4. Describe the (unique) function f : S2 → S2 such that (after
converting to a meromorphic function C → C using stereographic projection),
the resulting function is f(z) = z2. Show that this function is not conformal
precisely at 0 and ∞.
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