
Official Worksheet 5: The Logarithmic derivative

and the argument principle.

April 8, 2020

1 Definitions and the argument principle

Today’s worksheet is a short one: we cover the logarithmic derivative and the
argument principle

Suppose that f is a meromorphic function on a domain Ω (recall: this is
a function which is either holomorphic on Ω or is singular with only isolated
singularities, all of which are poles.)

Define the logarithmic derivative

d log

dz
f :=

f ′

f
.

Note that for any nonzero function f, this definition makes sense everywhere
except zeroes or poles of f (where it has at worst poles), since f ′ is defined
everywhere that f is. The notation d log is indicative of the fact that, where
defined, d

dx log(f(x)) = d log
dz f.

The logarithmic derivative d log has a number of nice properties. They key
property is sometimes known as the argument principle, and is as follows.

Theorem 1. 1. If f is nonzero and nonsingular at z0, then
f ′

f is nonsingular
at z0.

2. If f has a pole of order n at z0 then f ′

f has a simple pole with residue
equal to −n at z0.

3. If f has a zero of degree n at z0 then f ′

f has a simple pole with residue
equal to n at z0.

Corollary 1. If f is a meromorphic function on Ω and γ is a simple closed

curve inside Ω such that f is nonsingular and nowhere zero on γ, then
∮
γ
f ′

f (z)dz

is equal to 2πi(Z − P ), where Z is the number of zeroes of f inside γ and P is
the number of poles inside of γ, both counted with multiplicity (i.e. a pole of
order n contributes n to P and a zero of degree n contributes n to Z).
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Question 1. (a) Prove Theorem 1. (Hint: look at the Laurent series. You will
only need the first nonzero coefficients of f and f ′.)

(b) Use the residue formula to prove Corollary 1.
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Notice that P and Z are always integers: so the integral in the corollary is
always an integer multiple of 2πi. This is very useful in computations: once you
compute an contour integral of a logarithmic derivative with error less than π
in absolute value, the calculation is complete. This is used, for example, when
checking whether there is a zero of the zeta function in a given domain: the
standard way to do this is to compute a contour integral of the logarithmic
derivative to some low precision, as above. In fact this is our best evidence for
the Riemann hypothesis, which states that all (positive real value) zeroes of the
zeta function lie on the line 1

2 + iy of complex numbers with real part 1/2. One
can reasonably ask how to distinguish between a zero at 1

2 + iy and something
very close but not quite on the line, like .500000000001+ iy. As it turns out, the
logarithmic derivative is again the answer. The so-called functional equation for
the zeta function implies that if z is a zero of the zeta function then ¯1 − z is as
well (technically, the functional equation tells you that 1− z is a zero, but since
the zeta function is real on the real line, we have ζ(z) = ζ(z̄). This means that
if z = .500000000001 + iy were a zero, then ¯1 − z = 499999999999 + iy is a zero

as well, so the integral of the function ζ′

ζ along a small rectangle about 1
2 + iy

would return 2 · 2πi instead of 1 · 2πi. Since all integrals of this form done for
y on the order of many milions have returned 1 · 2πi, confirming the Riemann
hypothesis up to a large distance away from the origin.

2 Examples

Question 2.

1. Compute the logarithmic derivative of ez.

2. Compute the logarithmic derivative of cos(z).
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3. Compute the logarithmic derivative of 1
cos(z) .

4. Compute the logarithmic derivative of tan(z)

5. Compute the logarithmic derivative of the function 1
z + 1

1+z . Where are
its poles?

Question 3. Prove that the logarithimc derivative satisfies the following
property: d log

dz (f · g) = d log
dz f + d log

dz g. In other words, logarithmic derivative
converts products to sums. You can either do this directly or start by restricting
to the domain where log(f) and log(g) are defined, then using uniqueness of
analytic continuation.
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