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1 Introduction

In this section we will analyse conformal functions to the Riemann sphere, and
play around a little more with fractional linear transformations (when viewed as
functions to and from the sphere, they will be called Möbius transformations).
We will prove two main theorems. The first will characterize conformal functions
from some domain Ω ⊂ C to S2, and the second will characterize functions from
S2 to S2.

2 Conformal functions from a complex domain
to the sphere

Recall first that a conformal function is a function which preserves angles be-
tween curves (when we use “function” rather than “transformation”, we are
not requiring one-to-one or onto properties). A conformal function between two
complex domains f : Ω → Ω′ is a holomorphic function whose derivative is
nowhere zero. (We proved this a couple of worksheets ago; if you don’t remem-
ber this, take this as an equivalent definition).

How can we construct conformal functions from some Ω ⊂ C to the sphere
S2? First, remember that the sphere S2 is almost the same thing (from the
conformal point of view) as the complex plane. Indeed, as soon as we remove
the north pole, N = (0, 0, 1) ∈ S2, there is a conformal bijection (one-to-one
map which is conformal) between S2 \ {N} and the complex plane C, namely
the stereographic projection (from the North pole), PN : S2 \ {N} → C. Its
(compositional) inverse function P−1

N : C → S2 is also conformal. This means
that we can get a function Ω → S2 that misses the North pole by just taking
any conformal function Ω → C (equivalently, holomorphic function on Ω with

nowhere zero derivative) and applying the composition Ω
F- C

P−1
N- S2.

Conversely, given a function f : Ω → S2 that misses the north pole, we can
define a conformal function Ω → C as F := PN ◦ f. So conformal functions
f : Ω → S2 that miss the North pole are precisely the same as conformal
functions f : Ω→ C. What if we drop the condition of missing the North pole?
Well, from the point of view of stereographic projection, the North pole is the
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limit of points that project to further and further away in C, i.e., it should
be interpreted as ∞. Therefore when trying to interpret the “stereographic
projection” of a function f : Ω → S2 which sometimes hits the north pole,
we need to allow the holomorphic function F : Ω → C to have values equal
to ∞ : i.e., poles. A holomorphic function F which is defined on all of Ω
except possibly a set of isolated singularities z0, z1, . . . , which are poles (i.e.,
have locally holomorphic inverse) is called meromorphic. So we should expect
conformal functions Ω→ S2 to correspond to certain meromorphic functions F
on Ω. Where F is finite, we still need to impose the condition F ′ 6= 0 (necessary
for conformality). The analogous condition for poles turns out to be simply the
requirement that poles of F be simple, i.e. first order poles.

This statement is captured in the following theorem.

Theorem 1. Suppose Ω ⊂ C is an open domain. Suppose F is a meromorphic
function (i.e. holomorphic with possible poles) on Ω with poles at z0, z1, z2, . . .
the following properties.

1. If z ∈ Ω is not a pole, F ′(z) 6= 0 (non-zero derivative).

2. Each pole z0, z1, . . . in Ω is simple.

Then, the function f : Ω→ S2 defined as follows:

f(z) :=

{
P−1
N

(
F (z)

)
, z 6= zk(∀k)

N, z ∈ {z1, z2, . . . }.

is conformal. Moreover, any conformal function f : Ω→ S2 can be obtained in
this way from a meromorphic F as above.

We start by proving the converse direction, which we will do in two steps.
Question 1. (a) Suppose that f : Ω → S2 is a conformal function. Let

z0, z1, · · · ∈ Ω be all preimages of N ∈ S2. Let Ω′ = Ω \ {z0, z1, . . . } be the
complement to these. Show that the function F := PN ◦ f |Ω′ (the notation
f |Ω′ is the restriction of f to Ω′) is an (everywhere defined) conformal function
Ω′ → C. You may use that the composition of two conformal functions is
conformal (indeed, if application of each one preserves angles, application of
both together will still preserve angles). In other words, F is holomorphic on
Ω′ and doesn’t have any values with derivative 0 (on Ω′).

(b) Let w0, w1, · · · ∈ Ω be points such that f(wk) = S is the South pole
S = (0, 0,−1) ∈ S2. Clearly, none of the zk’s are equal to any of the wj ’s (since
the value of f cannot be both N and S at the same time), so F is defined on
wk. Show that wk are precisely the points in Ω′ satisfying F (wk) = 0.

(c) Let Ω′′ = Ω\{w1, w2, . . . } be the set of points whose image under f does
not hit the South pole. Show that the function G : Ω′′ → C defined by conjugate
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Southern stereographic projection1, G(z) = P̄Sf(z) is defind and conformal for
all z ∈ Ω′′ and G(z) = 1

F (z) , (the multiplicative inverse) where both are defined.

So G is a holomorphic function on Ω′′ with no zero derivatives.

(d) Deduce that the multiplicative inverse of F has removable singularities
at all singular points of F , i.e. all singularities of F , are poles (and not essential
singularities). Deduce that all poles of F are simple (first-order) from the fact
that G cannot have derivative zero at any of the zk.

And now we will show the converse:
Question 2. Let z0, z1, · · · ∈ Ω be a collection of isolated points, and set

Ω′ = Ω \ {z1, z2, . . . }. Suppose F is a function on Ω′ ⊂ Ω which has nowhere
zero derivative in Ω′, and such that the singularities at z1, z2, . . . , are simple
poles. Show that the function

f(z) :=

{
P−1
N F (z), z 6= zk∀k
N, z = zk

is conformal. Hint: it’s enough to check conformality for each point z ∈ Ω
independently. Do this first for z 6= zk, and then use the function G = F−1

(and the Southern stereographic projection P̄S) to show that the function f
defined above remains conformal at the zk.

3 Conformal functions from the sphere to itself

Now we will look at conformal functions g : S2 → S2.
Question 3.
(a) Suppose that g is a (bijective) conformal mapping S2 → S2. Show that

the function fN := g ◦ P−1
N : C→ S2 is conformal. (Here the domain is Ω = C,

the whole plane.)

(b) Show that the function fS := g ◦ P̄−1
S : C → S2 is also conformal, and

satisfies fS(z) = fN (z−1), when both are defined. Deduce that the (partially
defined) functions FN := PN ◦fN and FS := PN ◦fS are meromorphic functions
which are conformal, i.e. with nonzero derivative at all finite values and with
first-order poles at “infinite” values.

(c) Deduce that in the z → 0 limit, we have limz→0 FS(z) ·z is a well-defined
complex number, possibly equal to 0 (hint: look at the Laurent series). Deduce

that lim z →∞PN◦fN (z)
z also converges to a constant.

1There was an error in the initial notes: since they are “looking at the plane from opposite
sides”, Northern and Southern stereographic projection differ by a map which is not quite
conformal, but the mirror image to a conformal map. So the conformal version of Southern
stereographic projection is P̄S , given by taking stereographic projection from the South pole,
then applying the conjugation map.
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(d) If you haven’t already, do the Bonus question (Question 3) from Official
Worksheet 1. Use the result to deduce that if g(N) 6= N (i.e., if FS(0) 6= ∞)
then FN := PN ◦ fN above is a fractional linear transformation. Hint: by
bijectivity, there is some p ∈ S2 \N with f(p) = N . See that PN (p) will be the
unique pole of FN .

Now use (c) to deduce that if g(N) = N then F will be a non-constant linear
function, i.e. still a fractional linear transformation with constant denominator.

Now F is uniquely determined by fN and continuity (continuity implies that
the North pole has to go to the limit, limz→∞ fN (z), where the limit is taken
along any sequence z1, z2, . . . , approaching ∞ in absolute value). Deduce that
conformal functions

g : S2 → S2

precisely correspond to fractional linear transformations.
When viewed as functions S2 → S2, fractional linear transformations are

called Möbius transformations.

4 Examples

Question 4. (a) Show that the fractional linear transformation F (z) = 1/z
corresponds to the 180-degree rotation of the the sphere around the x axis,
(x, y, z) 7→ (x,−y,−z). (In particular it sends the North pole, ∞, to the South
pole, 0, and vice versa.)

(b) Show that the fractional linear transformation F (z) = iz corresponds
to rotation of the sphere by 90 degrees around the y axis, (x, y, z) 7→ (−y, x, z).

(c) The above two transformations are rigid transformations of the sphere
(they preserve distances between points, equivalently are given by an orthog-
onal matrix). It can be checked that any orientation-preserving (equivalently,
determinant-one) orthogonal matrix does indeed induce a conformal map from
S2 to S2. However the converse is not true, as we shall see.

Check that the conformal map S2 → S2 corresponding to the func-
tion F (z) = z + 1 does not preserve distances between points on S2.

Question 5. (This one is a little more time-consuming, but fun to do when
you have some free time.)

(a) Convince yourself that stereographic projection takes circles on the
sphere (equivalently, intersections of the sphere with a plane) to circles and
lines on the plane C.

(b) Prove that any fractional linear transformation takes circles and lines
on C to circles and lines (hint: it’s enough to do this for translations, z 7→ z+λ
and the inversion map z 7→ z−1, then compose these to get any fractional linear
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transformation). Give an example of a fractional linear transformation that
takes a circle to a line, and one that takes a line to a circle. In fact this is a way
of characterizing conformal transformations from the Riemann sphere to itself:
it is precisely those (continuous) transformations that take circles to circles.
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