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April 3, 2020

1 Introduction

We have worked so far with holomorphic functions from the complex plane C (or
regions thereof) to itself. It turns out that holomorphic functions also work as
functions from (or to) the sphere S2 (called the Riemann sphere in this context).
Here the sphere is defined as the set S2 := {(x, y, z) | x2 + y2 + z2 = 1} for
x, y, z real coordinates (this is a subset of the real Euclidean space, R3). It is
important to remember that, while the sphere is a three-dimensional object (it
is a manifold in 3-space), it “locally” looks two-dimensional (this is why maps
of the Earth can be drawn on a piece of paper). So a function on a sphere can
be defined, for example, as a pair of functions on each hemisphere, and each
hemisphere can be flattened out to a disk in the plane R2 (or C). We will use
a variant of this point of view to define holomorphic functions on the sphere.
However, we will start with defining conformal functions on the sphere.

2 Smooth paths on a sphere and angles

In this class, a smooth path (or curve) on S2 is a function γ : [0, T ] → R3

such that γ(t) ∈ S2 for any t ∈ [0, T ], and such that γ is differentiable as
a function on [0, T ], with continuous and nonzero derivative. (Note: in 141,
usually smoothness requires infinitely many derivatives and we do not require
the derivative to be nonzero... here we’re following notation from Stein.)

A useful property of functions to S2 (that many of you know from differential
topology or multivariable calculus) is that, if γ : [0, T ] → S2 is a smooth path
and γ(t) = ~p, some point of S2, then the derivative γ̇(t) is in the tangent plane
to S2 at ~p, which is the space of orthogonal vectors to ~p, i.e. {~v ∈ R3 | ~v ⊥ ~p. If
you haven’t seen this, convince yourself that this is the case:
Question 1. Show that if γ is a smooth curve on S2 then its derivative vector
γ̇(t) ∈ R3 is orthogonal to the vector γ(t). (Hint: one way to do this is to
use the fact that for F (x, y, z) = x2 + y2 + z2, the composition f ◦ γ has zero
derivative – why?)
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Let Ω ⊂ C be an open domain and let Ω′ ⊂ S2 be an open domain in a
sphere, as above (an open domain in a sphere is the complement to a closed
subset of the sphere, or equivalently, the intersection of a sphere with an open
domain in R3). Suppose f : Ω→ Ω′ and g : Ω′ → Ω are functions.

Then f is called conformal if for any smooth path γ in Ω (with nowhere
zero derivative) the derivative of the image path γ̃ = γ ◦ f is again nonzero
everywhere, and f preserves angles, i.e., if γ1, γ2 are two curves in S2 with the
same starting point p ∈ Ω, then the angle between the tangents to γ1 and γ2 is
equal to the angle between f ◦ γ1 and f ◦ γ2. Similarly, g is called conformal if
for two curves γ̃1, γ̃2 on the sphere both starting at the same point ~p ∈ S2, the
resulting image curves g ◦ γ̃1 and g ◦ γ̃2 are at the same angle from each other
as γ̃1, γ̃2. There is a little bit of a sign issue with defining angles on curves: you
get opposite angles if you are looking at the sphere “from the outside” vs. “from
the inside”. We will use the outside perspective.

Here is the official definition of angle we will use: given two vectors ~v, ~w in
R3, the cosine of the angle cos(Θ~v,~w) is defined as the dot product of the two
corresponding unit vectors, with the following formula:

cos(Θ~v,~w) =
~v · ~w
|~v| · |~w|

.

This determines the angle up to sign; the sign of the angle can be recovered
by remembering that we are measuring angles at a point of the sphere ~p =
γ1(0) = γ2(0). The angle is then positive (i.e., 0 < Θ < π) if the cross product
~v × ~w is positively proportional to the point of the circle ~p, and negative (i.e.,
π < θ < 2π) if the cross product is negatively proportional to the point of the
circle ~p. We will mostly not worry about signs, and just check that the cosine
of an angle is preserved.
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3 Stereographic projection.

As it turns out, there are no conformal maps from S2 to a domain in C (essen-
tially for the reason that you cannot squash a globe onto a single piece of paper
without creating creases). However, there are many interesting maps from (do-
mains in) C to S2. In fact, the standard map projection on most classroom walls
sends a rectangle with dimensions 2π × π onto the sphere, in a stereographic
way! (Although this map does not preserve distances, the fact that it preserves
angles was invaluable to early modern sailors: it makes it easier to know how
much you need to turn your ship to follow a course on a map.)

There are in particular two special maps of this type taht we will use, namely,
the stereographic maps. These are the inverse stereographic projection from the
North pole (written P−1N and the inverse stereographic projection from the South
pole (written P−1S ). Here the −1 powers indicate that these are the inverse (by
composition) maps to stereographic projection.

Definition 1. We define the north pole to be the point (0, 0, 1) ∈ S2 and the
South pole to be the point (0, 0,−1) ∈ S2.

Definition 2. Let ~p = (x, y, z) be a point of the sphere distinct from N =
(0, 0, 1). The northern stereographic projection PN (~p) is defined to be the point
where the line N, ~p intersects the x, y-plane. As a formula:

PN (~p) =
x

1− z
+ i

y

1− z
.

Similarly, southern stereographic projection is the same thing, with “north”
replaced by “south”. For ~p = (x, y, z) a point of the sphere distinct from
S = (0, 0,−1), and given by the formula

PS(~p) =
x

1 + z
+

y

1 + z
i.

Stereographic projections give bijections between the sphere (without the
north or South pole) and the plane.

Question 2. Define the inverse stereographic projection to be the function

P−1N : X + Y i 7→
(

2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
−1 +X2 + Y 2

1 +X2 + Y 2

)
.

Convince yourself that PN : S2 \ {N} → C and P−1N : C→ S2 \ {N} are inverse
maps of sets.
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Question 3. Here we will show that (Northern) stereographic projection pre-
serves angles up to sign, i.e. that if γ1, γ2 are two paths on S2 both starting at
a point p = (x, y, z) then their angle is preserved. If you get stuck here or this
is taking too much time, move to the next question.
(a) Remember that if γ1, γ2 are both smooth paths on the sphere starting at
some poing ~p = (x, y, z) on the sphere, then their derivatives are in the plane
orthogonal to ~p. The stereographic projection multiplies the two tangent vector
γ̇1(0), γ̇2(0) by the complex vector(

∂PN

∂x (~p), ∂PN

∂y , ∂PN

∂z

)
.

(This is the “complex Jacobian” of this transformation). We need to show that
this matrix takes pairs of vectors in the plane orthogonal to ~p to angles in C
forming the same angle.

First, show this is the case in the special case ~v = S = (0, 0,−1) is the south
pole (hint: in this case the Jacobian has a particularly nice form).
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(b) Next, use polar coordinates to show that (northern) stereographic projection
preserves angles at points of S2 which are notN,S. (This is a bit of a calculation,
you might want to skip it the first time around.)

5



The same thing can be proven for Southern stereographic projection, in the
same way. Since PN , PS are bijective maps that preserve angles, the same must
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be true of their inverse1.

4 Another characterization

Now we have a new way of thinking about conformal maps from a region of the
circle, Ω′ ⊂ S2. Indeed, suppose Ω̃ ⊂ S2 is a domain that does not contain the
North pole, and Ω ⊂ C is a domain in the complex plane. Then f : Ω̃ → Ω
is conformal if and only if the composition f ◦ P−1N is a conformal map from

P−1N (Ω̃) → Ω between domains of the complex plane! Similarly if Ω̃ doesn’t
contain the South pole. This lets us check conformal properties of maps to
and from the sphere in terms of conformal properties of maps between complex
domains: i.e., holomorphic maps with nonzero derivative.

5 For next time

We will characterize all conformal maps from S2 to S2, and we will see (using
stereographic “maps” of the sphere by C) that they precisely correspond to
fractional linear transformations! In particular, there are not that many of
them. If you want to get a head start, you already have all the tools to work
this out.

1There are some technical differentiability checks I’m ignoring here.
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