
Official Worksheet 2: Conformal mappings.

(Material from this worksheet may be on exam!)

April 1, 2020

1 Introduction

In this worksheet we will define and study conformal maps between two-dimensional
domains, which are maps which preserve angles. First, we will do a warm-up,
and study rigid transformations of the plane, which are maps which preserve
distances. If you have seen rigid transformations, you can skip to section 3.

1.1 Functions as mappings

Here (and for the next several lectures), the way we will be thinking of a function
f : A→ B between two sets (usually, domains in C) is as a mapping or (another
word for the same thing) as a transformation. This is a rule that “moves” every
point of A to a point of B, thought of as a geometric motion. Think of pinching
and rotating a Google Map or a picture on your phone (in fact, conformal maps
are precisely maps from the plane to itself that locally look like pinch-and-zoom
transformations, up to terms of order ≥ 2).

2 Rigid transformations

A function f : C→ C is a rigid transformation if it is continuous and bijective
(i.e., one-to-one and onto) and if for any two points z, z′ the distance between
the transformed points |f(z)− f(z′)| = |z− z′|, equals the distance between the
original two points.

There are three key examples of rigid transformations.

• A (vector) translation
f(z) = z + z0,

for z0 = a+ bi a fixed complex number.

• A rotation
f(z) = eiθz,

for θ a fixed angle.
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• A reflection, the key example being

f(z) = z̄(= x− yi),

reflecting a complex number over the real axis.

(Quick exercise: if it is not obvious to you or you want to check, convince
yourself that these preserve differences, by computing |f(z)− f(z′)|.)

Notice that the third example is different from the other two in that it is
not a holomorphic function.1 It also reverses orientation (i.e., the notions of
left/right and clockwise/counterclockwise get switched by a reflection, but not
by a translation or a rotation).

Question 1.
(a) Show that a complex number is determined by its distances to 0 and to 1
up to conjugation. Concretely, show that if z is a complex number and z′ is
another number such that |z′ − 0| = |z − 0| and |z′ − 1| = |z − 1| then either
z′ = z or z′ = z̄. (BTW, geometrically this the “sss” point of view on triangles:
saying that a triangle is determined up to orientation by the lengths of the three
sides.)

(b) Suppose f : C → C is a rigid transformation (remember: not necessarily
holomorphic!) and say that f(0) = z0, f(1) = z1. Show that f(1) = z0 + eiθ.

1It is in fact antiholomorphic.

2



(c) Let z be another complex number, with a = |z − 0|, b = |z − 1|. Show that
if a point z̃ has distance a from z0 and b from z1 then either z̃ = z0 + eiθz or
z̃ = z0 + eiθ z̄.

(d) Deduce that every rigid transformation is either of the form f : z 7→ z0 +
exp(iθ)z or of the form f : z 7→ z0 +exp(iθ)z̄, for θ and angle and z0 a constant.
This implies that every rigid transformation is the composition of a rotation
and a rotation, or a composition of a translation, a rotation, and a conjugation.
(Hint: you know from (c) that this formula holds for any specific z, and moreover
you know that θ, z0 are independent of z, since they are determined by f(0), f(1).
It remains to check that the choice of “to conjugate or not to conjugate” is the
same for each z. Do this for example by using that once you know f(0), f(1)
and also f(i), every point is uniquely determined by its distance to the three
vertices of a triangle.)
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3 Conformal maps

Say that Ω,Ω′ are regions in C. We say that a map f : Ω → Ω′ is conformal if
it is a bijection, it is differentiable with continuous derivative, and it preserves
angles.

Now we know how to take angles between lines, but since f might take a
line to a more complicated (but still smooth!) curve, we need to understand
how to measure angles between curves (i.e., paths).

Definition 1. Assume γ1, γ2 are smooth paths starting at z0. Then the angle
θγ1,γ2 between γ1 and γ2 at z0 is the angle between the (nonzero, since γ is

assumed smooth!) vectors γ̇1(0)
(

= dγ1
dt (0)

)
and γ̇2(0)

(
= dγ2

dt (0)
)
.

Remember that for us, angles are oriented (the angle between the vectors 1
and i is π/2, whereas the angle between the vectors i and 1 is 3π/2). One way
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to measure an angle between complex numbers is to take the argument,

θγ1,γ2 = Arg

(
γ̇2(0)

γ̇1(0).

)
Now we can define conformal maps:

Definition 2. A map f : Ω → Ω′ is conformal if for any z0 ∈ Ω and any
two smooth paths γ1, γ2 (functions from [0, T ] → Ω with everywhere nonzero
derivative) starting from z0, it is the case that f ◦ γ1, f ◦ γ2 have everywhere
nonzero time derivatives and

Θγ1,γ2 = Θf◦γ1,f◦γ2 .

In other words, f preserves angles between curves.

Notice that (in the plane), a curve γ(t) from z0 can be approximated to first
order by the line L(t) = z0 + tγ̇(0), with error o(t) (small compared to t). This
means that it is enough to check the conformal property for curves γ which are
line segments (but f ◦ γ may no longer be a line segment).

Question 2. Show that translations z 7→ z + z0 and scalings, z 7→ λz (for
z0 ∈ C any complex number and λ ∈ C \ {0} a nonzero complex number) are
conformal maps from C to C.
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4 Conformal functions are holomorphic!

It turns out that conformal functions are holomorphic. And conversely, in order
to be conformal a holomorphic function between domains Ω → Ω′ needs to be
bijective (one-to-one and onto) and have nonzero derivatives (intuitively: having
a zero derivative might “crush” a curve and make its derivative zero, but having
a nonzero derivative pinches and zooms it, and this does not change angles.)

This sounds like it might be hard to prove, but in fact it is an immediate
consequence of Cauchy-Riemann. The thing to remember is that the derivative
of a holomorphic function f along a path γ starting at z0 is equal to f ′(z0)
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times the “complex speed” of γ, i.e., if f is holomorphic and γ is smooth then
d(f◦γ)
dt = f ′(z0) · γ̇(0). It now follows that (if f ′(z0) 6= 0), the effect of f on the

tangents to curves at 0 is multiplying by λ := f ′(z0). This preserves angles,
as you’ve checked before. Conversely, you can observe that f being conformal
implies that df

dx = i · dfdy , and use Cauchy-Riemann. Thus conformal maps are

holomorphic. The other conditions of conformality (being bijective and taking
curves with nonzero derivative to curves with nonzero derivative) then imply
that a holomorphic function f : Ω→ Ω′ is a conformal mapping if and only if f
is bijective and has everywhere nonzero derivative. In fact, the second condition
is not necessary:
Question 2. (a) Show that if Ω,Ω′ are open domains in C and a function
f : Ω→ Ω′ is holomorphic and a bijection, then it is not the case that f ′(z0) = 0
for any z0 ∈ Ω. (Hint: Assume f ′ = 0. Hint: assume that f(z) − f(z0) is a
zero of degree n. Since f ′ = 0, we must have n ≥ 2. Now write f(z)− f(z0) =
an∆zn + an+1∆zn+1 + . . . . Show that there exists a power series g(z) with
g(z) = z + O(z2) and f(z) − f(z0) = ang(z)n. It follows from the identities
g(z0) = 0 and g′(z0) 6= 0 (for example from the intermediate value theorem)
that for any (think small) disk Dr(z0) around z0 in Ω, there exists a disk Dε(0)
around 0 such that every complex number α ∈ Dε has a preimage, z ∈ Dr with
g(z) = α. Now multiply α by the root of unity ζn to see f is not one-to-one.
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5 Examples of conformal maps

Question 3. Show that the following functions between the following domains
are conformal mappings from domain Ω to domain Ω′.
(a) f(z) = 1/z, with Ω = Ω′ = C \ {0}.
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(b) f(z) = exp(iz), with Ω = {z ∈ C | −π < Re(z) < π} the vertical strip
between −π and π and Ω′ = C \R≤0 the complement to the ray consisting real
numbers ≤ 0.

(a) f(z) = 1/(1 − z), with Ω = D1 the open unit disk and Ω′ = {z ∈ C |
Re(z) > 1/2 the half-plane bounded on the left by the vertical line Re(z) = 1/2
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6 For next time

If you want to get a head start on next time’s worksheet, look up the stereo-
graphic projection, a bijection between the sphere with the North (or South)
pole removed and the Euclidean plane R2. Try to show this mapping preserves
angles (i.e., is conformal, in a higher-dimensional sense). This is more concrete
for the inverse: so an exercise we will set up next time is to check that the map
from the plane R2 to the punctured sphere S2 \ {0, 0, 1} ⊂ R3 which is inverse
to stereographic projection takes pairs of intersecting lines (or more generally,
curves) to pairs of curves (now in 3-space!) at the same angle. This will allow us
to study conformal, equivalently, holomorphic functions whose domain or range
is the Riemann sphere (also known as the Riemann Sphere). Fractional linear
transformations are the key examples of conformal mappings from the sphere
to the sphere.
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