Official Worksheet 1: Fractional Linear transformations. (Material from this worksheet may be on exam!)

March 30, 2020

1 Introduction

In this short worksheet we will play around with fractional linear transformations. These are functions of the form

$$
f(z)=\frac{a z+b}{c z+d}
$$

where a, b, c, d are complex constants, which have certain nice properties.

2 Fractional linear functions

A rational function is a function of the form $f(z)=\frac{p(z)}{q(z)}$, where p and q are both polynomials. A fractional lienar function is a rational function $f(z)=\frac{p(z)}{q(z)}$ with the following properties:

1. $p=a z+b, q=c z+d$ are either constant or linear polynomials in z.
2. $q(z)$ is not zero (otherwise f would be nowhere defined)
3. $f(z)$ is not constant.

Question 1.

(a) Show that the conditions (2), (3) above on f above are equivalent to the condition that the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has nonzero determinant.

(b) Show that the two functions $f(z)=\frac{a z+b}{c z+d}$ and $f^{\prime}(z)=\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}$ (satisfying (1)(3) above) are equal if and only if the matrices $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $M^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$ are nonzero scalar multiples of each other (i.e., $M^{\prime}=\lambda M$ for a nonzero complex number λ).
\square

3 As mappings from the plane with ∞ to itself

We see immediately that a fractional linear function is either entire (when $c=0$ and the denominator is zero) or (when $c \neq 0$), has one pole at $z_{0}=-d / c$, the zero of the denominator). Convince yourself that this is a simple pole.
Question 2.
(a) Show that, if $c \neq 0$ and $\frac{a z+b}{c z+d}$ is a fractional linear transform then $\lim _{z \rightarrow \infty} f(z)$ exists and is equal to a / c.
(b) Extend the function f (a function from a domain of definition to \mathbb{C}) to a function from the set $\mathbb{C} \sqcup\{\infty\}$, consisting of all complex numbers and the
symbol ∞, by setting $f(\infty)=a / c$ (defined to be ∞ if $c=0$) and $f\left(z_{0}\right)=\infty$ for z_{0} the pole (if it exists). Prove that any fractional linear transformation extended in this way becomes a one-to-one and onto (i.e., bijective) function from $\mathbb{C} \sqcup\{\infty\}$ to itself. ${ }^{1}$
\square

4 Compositions

The composition of two fractional linear transformations (as functions from $\mathbb{C} \sqcup\{\infty\}$ to itself) is again a fractional linear transformation, as you can see from the next question.
Question 2. (a) Show that the composition (as functions from the set $\mathbb{C} \sqcup\{\infty\}$ to itself) of $f=\frac{a z+b}{c z+d}$ and $f^{\prime}=\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}$ is the fractional transformation $f^{\prime \prime}=$ $\frac{a^{\prime \prime} z+b^{\prime \prime}}{c^{\prime \prime} z+d^{\prime \prime}}$, where the matrix

$$
\left(\begin{array}{ll}
a^{\prime \prime} & b^{\prime \prime} \\
c^{\prime \prime} & d^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)
$$

[^0]
(b) Deduce that the inverse function (inverse in the sense of composition) to a fractional linear transformation is a fractional linear transformation, and in particular a function which is holomorphic with at most one pole (hint: use the matrix inverse).

5 Bonus questions

Question 3.
(a) What is the residue of the pole of a fractional linear transformation in terms of a, b, c, d ?

(b) Show that a function $f(z)$ which is defined on all of \mathbb{C} except a single simple pole, and is bounded when $z \rightarrow \infty$, is a fractional linear transformation Hint: Subtract the singular part, then use Liouville's theorem.

[^0]: ${ }^{1}$ Next lecture, we will see that $\mathbb{C} \sqcup\{\infty\}$ can be seen geometrically as a Riemann sphere.

