Worksheet 7: Some exercises (prep for lecture).

May 7, 2020

1 Introduction

Today I am going to give a few short exercises based on the lectures so far, in preparation for today's lecture.

2 Conformal mappings between domains in the plane

Recall that a conformal mapping is a mapping of sets $\Omega \to \Omega'$ which is a continuous, real differentiable bijection and takes angles between curves to angles between curves. (A conformal map is a continuous mapping which takes angle to angles, but drops the bijection requirement). We have access to the following results.

Proposition 1. 1. If $f: \Omega \to \Omega'$ is a conformal mapping then the compositional inverse mapping, f^{-1} (as a mapping of sets), is also conformal.

2. If $f: \Omega \to \Omega'$ and $g: \Omega' \to \Omega''$ are conformal then $g \circ f: \Omega \to \Omega''$ is also conformal.

Theorem 1. If Ω, Ω' are two open domains in the complex plane \mathbb{C} then $f: \Omega \to \Omega'$ is a conformal mapping if and only if f is holomorphic and a bijection.

Now conformal mappings give us a way to compare complex domains in a new way.

Question 1. Construct a conformal mapping from the (open) unit disk D_1 to the disk D_2 of radius 2.

Solution. Just take the map $z \mapsto 2z$.

Question 2. Let $H = \{z \mid \operatorname{Im}(z) > 0 \text{ be the upper half-plane. Show that for any fractional linear function } f = \frac{az+b}{cz+d} \text{ such that } a,b,c,d \in \mathbb{R} \text{ are real parameters}$ and the determinant of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is positive (thanks to Ankit for pointing this out), f determines a conformal mapping from H to H.

Solution. First, we show that if z is in the upper half-plane then f(z) is as well, for f as above. Let z be in the upper half-plane, so $\mathrm{Im}(z) = \frac{z-\bar{z}}{2i} > 0$. We compute the imaginary part $\mathrm{Im} f(z) = \frac{f(z) - f(\bar{z})}{2i} = \frac{az+b}{cz+d} - \frac{a\bar{z}+b}{c\bar{z}+d}$ (the coefficients a,b,c,d do not get conjugated as they are real). Rewrite this as $\frac{\mathrm{Im}((az+d)(c\bar{z}+d))}{|cz+d|^2}$. The denominator is positive and the imaginary part in the numerator is $(ad-bc)\mathrm{Im}z$, which has the same sign as the determinant ad-bc. Now take $g = \frac{az+c}{bz+d}$ be the compositional inverse of f. Then g again takes $\mathbb H$

Now take $g = \frac{az+c}{bz+d}$ be the compositional inverse of f. Then g again takes \mathbb{H} to \mathbb{H} . So f, g are inverse holomorphic bijections of the upper half-plane to itself, in particular f is a conformal mapping.

Question 3. Construct a conformal mapping from the (open) upper half-plane, $H = \{z \mid \text{Im}(z) > 0 \text{ to the (open) unit disk, } D_1. \text{ Hint: try using a fractional linear transformation (but not with real coefficients in this case).}$

Solution. Define $f(z) = \frac{z-i}{z+i}$. Note that for $\in \mathbb{H}$, we see z+i, z-i have the same real part and $|\mathrm{Im}(z+i)| > |\mathrm{Im}(z-i)|$. So |f(z)| < 1. This means f maps \mathbb{H} to \mathbb{D} . Conversely, the inverse $\frac{z+1}{-iz+i}$ can be seen to map \mathbb{D} to \mathbb{H} .

Question 4. (a) Construct a conformal mapping $f: S^{vert}_{(-\pi,\pi)} \to \Omega$ from the vertical complex strip $S^{vert}_{(-\pi,\pi)}$ given by $\{z \mid -\pi < \operatorname{Re}(z) < \pi\}$ and the complement to the ray of negative numbers, $\Omega := \mathbb{C} \setminus \{-r \mid r \in \mathbb{R}_{\geq 0}. \ (\text{Note: } \Omega \text{ is open, so does not contain } 0).$

(b) What is the inverse $f^{-1}: \Omega \to S$? Check that, indeed, this is a holomorphic function with nowhere zero derivative.

Solution. Define $f(z) = \exp(iz)$. This maps the vertical strip S to the complement $\mathbb{C} \setminus \mathbb{R}_{\geq 0}$. The inverse is given by $w \mapsto -i \log(w)$, on $\mathbb{C} \setminus \mathbb{R}_{\geq 0}$. Its derivative is 1/z, which is nonzero

Question 5. Construct a conformal mapping $f: S_{(0,\pi)}^{vert} \to H$ from the vertical complex strip of numbers of real part between 0 and π to the upper half-plane H.

Solution Take $z \mapsto \exp(iz)$ again.