Worksheet 7: Some exercises (prep for lecture).

May 7, 2020

1 Introduction

Today I am going to give a few short exercises based on the lectures so far, in preparation for today's lecture.

2 Conformal mappings between domains in the plane

Recall that a conformal mapping is a mapping of sets $\Omega \rightarrow \Omega^{\prime}$ which is a continuous, real differentiable bijection and takes angles between curves to angles between curves. (A conformal map is a continuous mapping which takes angle to angles, but drops the bijection requirement). We have access to the following results.

Proposition 1. 1. If $f: \Omega \rightarrow \Omega^{\prime}$ is a conformal mapping then the compositional inverse mapping, f^{-1} (as a mapping of sets), is also conformal.
2. If $f: \Omega \rightarrow \Omega^{\prime}$ and $g: \Omega^{\prime} \rightarrow \Omega^{\prime \prime}$ are conformal then $g \circ f: \Omega \rightarrow \Omega^{\prime \prime}$ is also conformal.

Theorem 1. If Ω, Ω^{\prime} are two open domains in the complex plane \mathbb{C} then f : $\Omega \rightarrow \Omega^{\prime}$ is a conformal mapping if and only if f is holomorphic and a bijection.

Now conformal mappings give us a way to compare complex domains in a new way.

Question 1. Construct a conformal mapping from the (open) unit disk D_{1} to the disk D_{2} of radius 2 .

Solution. Just take the map $z \mapsto 2 z$.
Question 2. Let $H=\{z \mid \operatorname{Im}(z)>0$ be the upper half-plane. Show that for any fractional linear function $f=\frac{a z+b}{c z+d}$ such that $a, b, c, d \in \mathbb{R}$ are real parameters and the determinant of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is positive (thanks to Ankit for pointing this out), f determines a conformal mapping from H to H.

Solution. First, we show that if z is in the upper half-plane then $f(z)$ is as well, for f as above. Let z be in the upper half-plane, so $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}>$ 0 . We compute the imaginary part $\operatorname{Im} f(z)=\frac{f(z)-f(\bar{z})}{2 i}=\frac{a z+b}{c z+d}-\frac{a \bar{z}+b}{c \bar{z}+d}$ (the coefficients a, b, c, d do not get conjugated as they are real). Rewrite this as $\frac{\operatorname{Im}((a z+d)(c \bar{z}+d))}{|c z+d|^{2}}$. The denominator is positive and the imaginary part in the numerator is $(a d-b c) \operatorname{Im} z$, which has the same sign as the determinant $a d-b c$.

Now take $g=\frac{a z+c}{b z+d}$ be the compositional inverse of f. Then g again takes \mathbb{H} to \mathbb{H}. So f, g are inverse holomorphic bijections of the upper half-plane to itself, in particular f is a conformal mapping.

Question 3. Construct a conformal mapping from the (open) upper half-plane, $H=\left\{z \mid \operatorname{Im}(z)>0\right.$ to the (open) unit disk, D_{1}. Hint: try using a fractional linear transformation (but not with real coefficients in this case).

Solution. Define $f(z)=\frac{z-i}{z+i}$. Note that for $\in \mathbb{H}$, we see $z+i, z-i$ have the same real part and $|\operatorname{Im}(z+i)|>|\operatorname{Im}(z-i)|$. So $|f(z)|<1$. This means f maps \mathbb{H} to \mathbb{D}. Conversely, the inverse $\frac{z+1}{-i z+i}$ can be seen to map \mathbb{D} to \mathbb{H}.

Question 4. (a) Construct a conformal mapping $f: S_{(-\pi, \pi)}^{\text {vert }} \rightarrow \Omega$ from the vertical complex strip $S_{(-\pi, \pi)}^{\text {vert }}$ given by $\{z \mid-\pi<\operatorname{Re}(z)<\pi\}$ and the complement to the ray of negative numbers, $\Omega:=\mathbb{C} \backslash\left\{-r \mid r \in \mathbb{R}_{\geq 0}\right.$. (Note: Ω is open, so does not contain 0).
(b) What is the inverse $f^{-1}: \Omega \rightarrow S$? Check that, indeed, this is a holomorphic function with nowhere zero derivative.

Solution. Define $f(z)=\exp (i z)$. This maps the vertical strip S to the complement $\mathbb{C} \backslash \mathbb{R}_{\geq 0}$. The inverse is given by $w \mapsto-i \log (w)$, on $\mathbb{C} \backslash \mathbb{R}_{\geq 0}$. Its derivative is $1 / z$, which is nonzero

Question 5. Construct a conformal mapping $f: S_{(0, \pi)}^{\text {vert }} \rightarrow H$ from the vertical complex strip of numbers of real part between 0 and π to the upper half-plane H.

Solution Take $z \mapsto \exp (i z)$ again.

