Math 185 Quiz 1.

March 8, 2020

Write on the front and back of this sheet; extra blank sheets are availale.

1. (a) Find z such that $\exp (z)=-1+\sqrt{3} i$. Observe that $\arctan (-\sqrt{3})=$ $\pi / 3$ and $|z|=\sqrt{4}=2$, so we can use $z=i \pi / 3+\log (2)$. (Or $z+2 \pi n$ for any integer $n \in \mathbb{Z}$).
(b) Find $(-1+\sqrt{3} i)^{5}$. It's $\exp (10 \pi i / 3) \cdot 2^{5}=\exp (-2 \pi i / 3) \cdot 2^{5}=\frac{-1-\sqrt{3} i}{2} \cdot 32=$ $-16-15 \sqrt{3}$.
2. $\gamma(t)$ is a path from $\gamma(0)=1$ to $\gamma(T)$ that satisfies $\gamma(t)=\dot{\gamma}(t)$ (for $\left.\dot{\gamma}(t)=\frac{d \gamma}{d t}\right)$. Compute $\int_{\gamma} \frac{1}{z} d z . \int_{0}^{T} \frac{\dot{\gamma}(t)}{\gamma(t)} d t=\int_{0}^{T} \frac{\gamma(t)}{\gamma(t)} d t=\int_{0}^{T} 1=T$.
3. You are given that $f(z)=\frac{1}{e^{z}+1}$ has a power series expansion, $\frac{1}{e^{z}+1}=\sum_{n=0}^{\infty} a_{n} z^{n}$ for $z<R$ (radius of convergence). Prove that R is finite (in fact, you will probably show that R is less than some specific constant). The limit of $|f(z)|$ as $z \rightarrow \pi i$ goes to infinity since $e^{\pi i}+1=0$. Thus f cannot have an everywhere convergent Taylor series.
