Math 185 Quiz 1.

March 8, 2020

Write on the front and back of this sheet; extra blank sheets are availale.

1. (a) Find z such that $\exp(z) = -1 + \sqrt{3}i$. Observe that $\arctan(-\sqrt{3}) = \pi/3$ and $|z| = \sqrt{4} = 2$, so we can use $z = i\pi/3 + \log(2)$. (Or $z + 2\pi n$ for any integer $n \in \mathbb{Z}$).

(b) Find $(-1+\sqrt{3}i)^5$. It's $\exp(10\pi i/3) \cdot 2^5 = \exp(-2\pi i/3) \cdot 2^5 = \frac{-1-\sqrt{3}i}{2} \cdot 32 = -16 - 15\sqrt{3}$.

2. $\gamma(t)$ is a path from $\gamma(0) = 1$ to $\gamma(T)$ that satisfies $\gamma(t) = \dot{\gamma}(t)$ (for $\dot{\gamma}(t) = \frac{d\gamma}{dt}$). Compute $\int_{\gamma} \frac{1}{z} dz$. $\int_{0}^{T} \frac{\dot{\gamma}(t)}{\gamma(t)} dt = \int_{0}^{T} \frac{\gamma(t)}{\gamma(t)} dt = \int_{0}^{T} 1 = T$.

3. You are given that $f(z) = \frac{1}{e^z+1}$ has a power series expansion, $\frac{1}{e^z+1} = \sum_{n=0}^{\infty} a_n z^n$ for z < R (radius of convergence). Prove that R is finite (in fact, you will probably show that R is less than some specific constant). The limit of |f(z)| as $z \to \pi i$ goes to infinity since $e^{\pi i} + 1 = 0$. Thus f cannot have an everywhere convergent Taylor series.