
Math 185 Homework 6.Due Wednesday 3/4

Do 5 out of the first six problems in Chapter 3 (Stein and Shakarchi
problems III.8.1-III.8.6).
III.8.1 Using Euler’s formula, sin(πz) = 0 if and only if exp(πiz) = exp(−πiz).
Dividing by the RHS gives exp(2πiz) = 1, which is true if and only if z ∈ Z (is
an integers). The residue of 1

sin(z) at n ∈ Z is

1

sin′(πn)
=

1

cos(πn)
=

{
1, n even

2, n odd
.

III.8.2 Let f(z) = 1
1+z4 . We can write f(z) = (z + i)−2(z − i)−2, and in

particular f only has singularities at ±i. Set g(z) = (z + i)−2. Then f(z) =
g(z)

(z−i)2 . Write the Taylor expansion around i of f(z), so f(z) =
∑
ak∆zk for

∆z = z − i. Then if g(z) =
∑
bk∆zk, we have f(z) = g(z)

∆z

2
=
∑
bkz

k−2. This
means that ak = bk+1. In particular the residue Resz=if(z) is a−1 = b1 =
g′(i) = −2

(i+i)3 = −2
−8i = −i

4 .

Now let Ih(R) =
∫ R
−R

1
1+z4 be the integral of f(z) along a long (real) hor-

izontal segment γh = [−R,R]. Obviously,
∫∞
−∞ f(x)dx = limR→∞ Ih(R). Let

Ia(R) =
∫
γa
f(z)dz be the integral of f along the semicircle γa(t) = R exp(it)

for t ∈ [0, π]. Then the union γh ∪ γa is a simple closed loop, which we call
γ. When R > 1, the interior of γ contains a single singularity of f , namely i,
so the loop integral can be expressed in terms of a residue1. Thus

∫
γ
f(z)dz =

2πiResif = 2πi−i4 = π
2 . But notice that by the triangle inequality, |f(z)| ≤ 1

R4−1

for z on the arc γa. This means that Ia(R) ≤
∫ π

0
|f(z)| · |γ̇(z)|dt ≤ πR

R4−1 . As
R→∞, we have Ia(R)→ 0, so

π

2
= lim
R→∞

∫
γ

f(z)dz = lim
R→∞

Ia(R) =

∫ ∞
−∞

1

x4 + 1
.

Notice: we could have just as well taken the lower semicircle in-
stead of the upper semicircle, as the integral along the arc would go
to zero. This would reverse the parametrization of the horizontal
component γh, flipping a sign. This is telling us that relevant residues
at at i and at −i differ by a sign.

1Note that here the “residue” point of view could equally well be replaced by applying
Cauchy residue formula for g′(i) to the function g(z) = 1

z+i
.
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III.8.3
Let f(z) = exp(iz). Theb for real x, we have Re(exp(ix)) = cos(x) and

Re( exp(ix)
x2+a2 ) = cos(x)

x2+a2 . Therefore it is enough to find
∫∞
−∞

exp(iz)
z2+a2 , then take the

real part2. So define Ih(R) :=
∫ R
−R

exp(ix)
x2+a dz, the path integral along the hor-

izontal segment [−R,R]. Let γa be the arc R exp(it) for t ∈ [0, π], as before.
Let γ be the composed contour, consisting of traversing [−R,R], then γa, coun-

terclockwise. Let g(z) = exp(iz)
z+ia . Then (assuming R > 1), we see that on the

interior of the closed loop γ the function g(z) is holomorphic, and so by Cauchy
we can compute∫

γ

f(z)dz =

∫
γ

g(z)

z − i
dz = 2πig(z) = 2πi

exp(i(ia))

ia+ ia
=
π exp(−a)

a
.

Now we once again observe that for z ∈ γa, we have Im(z) ≥ 0 so | exp(iz)| ≤ 1
and 1

|z2+a2| ≤ |R
2 − a2|. Thus the limit

lim
R→∞

|
∫
γa

f(z)dz| ≤ lim
R→∞

(
R

R2 − a2
) = 0.

It follows that π e
−a

a = limR→∞
∫
γ
f(z)dz = limR→∞

∫
γh
f(z)dz+ 0. Taking real

parts doesn’t change the answer in this case: π e
−a

a =
∫∞
−∞

cos(x)
x2+a2 .

III.8.4 This problem is very similar to the last one, except that we take imag-
inary parts and the value of g at z0 = ai gets multiplied by a factor of ai.

III.8.5 If ξ is negative, we take a contour integral of exp(−2πixξ)
(1+z2)2 in the positive

plane, along a curve consisting of a semicircle of radius R and an interval from
−R to R. If ξ is negative, we take the integral of the same function along
the reflected curve in the positive plane. In the first case, we traverse the

interval in the direction R → −R, and pick up a term of the type
∫ R
−R

e−πizξ

(1+z2)2

(with limit
∫∞
−∞

e−πizξ

(1+z2)2 ) in the residue calculation; the semicircle term goes to

zero. In the otehr direction we pick up a term of the type
∫ −R
R

e−πizξ

(1+z2)2 , with

the parametrization of the interval [−R,R] given by going backwards, which is
(in the limit) the negative integral, (visually: we are traversing a contour in
the lower half-plane counterclockwise, so [−R,R], which is at its top, must be
parametrized against the standard parametrization.) The rest of the problem is
a straightforward residue calculation in the corresponding contour. Notice that
here taking the opposite contours wouldn’t work, as the relevant function would
grow exponentially on the arc component!

2Alternatively, we can use cos(x) = 1
2
(exp(ix)+exp(−ix)), and then done a contour integral

calculation for
exp(iz)

z2+a2 and for
exp(−iz)

z2+a2 , while taking care that the contours we would use for

the two functions are mirror to each other
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III.8.6
Start with g(z) = 1

(z+i)n+1 . Since the degree in the denominator is ≥ 2,

the integrals along arcs of radius R approaches 0 in the R → ∞ limit, and
the contour integral reduces to an integral along the boundary of a semicircle

with pole at i, as before. We would like to know the integral
∮ g(z)

(z−i)n+1 . Write

∆z = z − i. Then g(z) = 1
(∆z−2i)n+1 and the relevant residue is the (∆z)n-term

of the function 1
(∆z−2i)n+1 . We use the geometric formula for the inverse, first

rewriting it in terms of 1
1−β for some β = O(∆z) a small (in the ∆z → 0 limit)

parameter depending on ∆z. In this case we have

1

(∆z + 2i)n+1
=

1

(2i)n+1(1− β)n+1
,

for β = −z
2i = zi

2 . The formula now follows from considering the expression
1

(1−β)n+1 =
∑∞
k=0

(
n+k
k

)
βk, looking at the ∆zn term in this expression, and

using the fact that(
2n

n

)
· 2−2n = (2n!)(2nn!)−1(2nn!−1) =

1 · 2 · · · · (2n− 1) · 2n
22 · 42 · 62 · . . . (2n)2

.
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