Math 185 Homework 6.Due Wednesday 3/4

Do 5 out of the first six problems in Chapter 3 (Stein and Shakarchi
problems III.8.1-I11.8.6).
IT1.8.1 Using Euler’s formula, sin(rz) = 0 if and only if exp(miz) = exp(—miz).
Dividing by the RHS gives exp(2m’z) = 1, which is true if and only if z € Z (is
an integers). The residue of atn €Zis

bm(z)

1, n even

1 1
sin’(mn)  cos(wn) {2, nodd

IT1.8.2 Let f(z) = ﬁ We can write f(z) = (2 +1i)7?(z — i)72, and in

particular f only has singularities at 4i. Set g(z) = (z +4)~2. Then f(z) =
(zg(zl)g. Write the Taylor expansion around 4 of f(z), so f(2) = Y arAzF for

)2
Az = z —i. Then if g(z) = Y by AzF, we have f(z) = 9z) = > b2*~2. This

means that ap = bgy1. In particular the residue Res,— lf( )is a_; = b =
g'(i) = (H_f)a = __821 = _41~

Now let I (R) = f_RR H% be the integral of f(z) along a long (real) hor-
izontal segment v, = [~R, R]. Obviously, [*_ f(z)dz = limp_,ec In(R). Let

R) = f% f(2)dz be the integral of f along the semicircle v,(t) = Rexp(it)
for t € [0,7]. Then the union v, U7, is a simple closed loop, which we call
v. When R > 1, the interior of v contains a single singularity of f, namely 4,
so the loop mtegral can be expressed in terms of a residue!. Thus f f(z dz =

2miRes; f = 27”7 = 7. But notice that by the triangle mequahty, [f(2)| <

for z on the arc v,. This means that I,(R) < [ |f(z)| - [¥(2)|dt <
R — oo, we have I,(R) — 0, so

<1
:1 = lim I, = —
A [ sterts = 1) = [ o

Notice: we could have just as well taken the lower semicircle in-
stead of the upper semicircle, as the integral along the arc would go
to zero. This would reverse the parametrization of the horizontal
component v;, flipping a sign. This is telling us that relevant residues
at at ¢ and at —i differ by a sign.

R41

R41 As

INote that here the “residue” point of view could equally well be replaced by applying
Cauchy residue formula for ¢’(¢) to the function g(z) =

z+z



I11.8.3
Let f(z) = exp(iz). Theb for real x, we have Re(exp(iz)) = cos(z) and
Re(2Rl2)) — <05@) Therefore it is enough to find 1= xP(2) " then take the

r24a? z24a? z2+4a?
real part?. So define Ij,(R) := RR ezpjz) dz, the path integral along the hor-
izontal segment [—R, R]. Let -, be the arc Rexp(zt) for t € [0, 7], as before.

Let v be the composed contour, consisting of traversing [— R, R], then ~,, coun-

terclockwise. Let g(z) = C’Z‘Ijr(fj) Then (assuming R > 1), we see that on the

interior of the closed loop ~ the function g(z) is holomorphic, and so by Cauchy
we can compute

/f / g(z )dZ—27mg( ) = 2ri _exp(i(ia)) _ Wexp(—a).

a + 1a a

Now We once again observe that for z € ~,, we have Im(z) > 0 so |exp(iz)| <1
and < |R? — @?|. Thus the limit

= <

R
| LR
lim | / CE < fim () =0

R—o0

It follows that WQ =limp_, 00 f f(z)dz = limﬁHoo f f(2)dz +0. Taking real

cos(x)
oo x2+a? "’

parts doesn’t change the answer in this case: 7&— = f

II1.8.4 This problem is very similar to the last one, except that we take imag-
inary parts and the value of g at zy = ai gets multiplied by a factor of a.

IT1.8.5 If £ is negative, we take a contour integral of % in the positive
plane, along a curve consisting of a semicircle of radius R and an interval from
—R to R. If £ is negative, we take the integral of the same function along
the reflected curve in the positive plane. In the first case, we traverse the

—miz€

interval in the direction R — —R, and pick up a term of the type f R (1

F22)2
(with limit f_ T J:Z;)Ez) in the residue calculation; the semicircle term goes to
zero. In the otehr direction we pick up a term of the type | 1; " %, with

the parametrization of the interval [—R, R] given by going backwards, which is
(in the limit) the negative integral, (visually: we are traversing a contour in
the lower half-plane counterclockwise, so [—R, R], which is at its top, must be
parametrized against the standard parametrization.) The rest of the problem is
a straightforward residue calculation in the corresponding contour. Notice that
here taking the opposite contours wouldn’t work, as the relevant function would
grow exponentially on the arc component!

2 Alternatively, we can use cos(x) = %(exp(ia:)—i—exp(—i:c)), and then done a contour integral
exp(iz) exp(—1iz)

z24a? 22+a?
the two functions are mirror to each other

calculation for and for

while taking care that the contours we would use for



I11.8.6

Start with g(z) = W Since the degree in the denominator is > 2,
the integrals along arcs of radius R approaches 0 in the R — oo limit, and
the contour integral reduces to an integral along the boundary of a semicircle

with pole at i, as before. We would like to know the integral ¢ (zfg)zzﬂ . Write

Az =z—1. Then g(z) = m and the relevant residue is the (Az)"-term
of the function W. We use the geometric formula for the inverse, first

rewriting it in terms of ﬁ for some 8 = O(Az) a small (in the Az — 0 limit)
parameter depending on Az. In this case we have

1 1

(Az+ 20+ (2i)nti(1— p)ntl

for B = 57 = % The formula now follows from considering the expression
W = > s ("zk)ﬂk, looking at the Az™ term in this expression, and
using the fact that

1-2----(2n—1)-2n
22.42.62. .. (2n)%

(2n> L2727 = (2n!)(2"nl) (2"l =

n



