
Math 185 Homework 5 solutions and hints.

1. (a) Assume that f(z) is an everywhere holomorphic function which
is periodic with period π, so that f(z + π) = f(z). Show that if f is
bounded on the strip {a+ bi | −π/2 ≤ a ≤ π/2} then f is a constant.

The boundedness statement is equivalent to saying that there exists a real
constant c > 0 such that |f(a+ bi)| ≤ c for π/2 ≤ a ≤ π/2. Now if z = a+ bi is
arbitrary then by periodicity, f(z) = f(z′) for z′ = a′ + bi, with a′ = (a + π/2
mod π) − π/2. Since 0 ≤ a mod π ≤ π, we see that −π/2 ≤ a′ ≤ π/2, so
|f(z)| = |f(z′)| ≤ c.

(b) Show that the sum f(z) :=
∑∞
n=−∞

1
(z+π·n)2 converges for all z other

than integer multiples of π (for which one of the 1
z+π·n will blow up),

and show that it is periodic with period π.
First, assume z = a + bi and −π/2 ≤ a ≤ π/2. Write f(z) = 1/(z + 0)2 +∑
n 6=0

1
(z+nπ)2 , or equivalently (separating positive and negative n), we write

f(z) =
∑
n≥1

1
(z+nπ)2 +

∑
n≤−1

1
(z+nπ)2 . Now since |a| ≤ π/2, the triangle in-

equality gives |a + nπ| ≥ (|n| − 1/2)π, and so |z| ≥ |Re(z)| ≥ (|n| − 1/2)π.
Flipping the inequality, we see that for a nonzero integer n, we have the in-
equality | 1

z+nπ | ≤
1

((|n|−1/2)π)2 = 4
(2n−1)2π2 . This converges (use the comparison

test or the integral test), so so long as the remaining term 1
z+0π is defined (i.e.

z 6= 0) we see that the sum defining f(z) converges absolutely.
Now if z = a + bi is any complex number which is not an integer multiple

of π, let z′ = (a + π/2) mod π − π/2, so that z′ ≡ z mod π and |z′| ≤ π/2.
Say that z′ = z + kπ, for k ∈ Z. Then each summand in the sum for f(z)
is 1

(z+nπ)2 = 1
(z′+(n−k)π)2 , and is also a summand in the sum for f(z′). And

conversely, each summand 1
(z′+nπ) is equal to the summand 1

(z+(n+k)π) in the

sum for f(z) (note that this is not true if we do not allow n to be negative —
why?)

So we’ve seen that f(z′) is defined by an absolutely convergent sum for
z′ 6= 0 and f(z) is defined by a rearrangement of this sum (for z′ 6= 0 mod π).
Therefore the sum defining f(z′) converges to the same value as f(z). This gives
periodicity and well-definedness.

(c) You may assume f(z) defined above is holomorphic (on the domain
z 6= πn). Show that f is bounded for z satisfying |Im(z)| ≥ 1.

Say that z = a + bi. Then f(z) = f(z′) for z′ = a′ + b with |a′| ≤ π/2, as
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before. We are now assuming that |b| ≥ 1. Now from before,
∑
n 6=0

1
(z′+nπ) is

bounded by the constant c = 2 ·
∑∞
n=0

4
(2n−1)2π2 (the 2 is here because each term

1

(|n|π− 1
2π)

appears twice: once for a negative and once for a positive index).

So it remains to bound 1
z′ . But |z′| ≥ Im(z′) = Im(z) ≥ 1, so we get that

f(z) = f(z′) ≤ 1 + c when |Im(z)| ≥ 1.
(d) We will see later (when we study Laurent series) that the poles of f(z)

exactly cancel the poles of 1
sin(z)2 , so that f(z) − 1

sin(z)2 is everywhere holo-

morphic (or rather, can be extended to an everywhere holomorphic function).
Taking this on faith, show that f(z) = 1

sin(z)2 + c (for some constant c). (Hint:

it will be helpful to see that 1
sin(z)2 is also bounded for |Im(z)| ≥ 1.)

Suppose |Im(z)| ≥ 1. Then | sin(z)| = | e
iz+e−iz

2i | ≥ 1
2 |(|e

iz| − |e−iz|)|, by the

triangle inequality. But |ez| = eRe(iz) = e−Im(z). If Im(z) ≥ 1 then |eiz| ≤ e−1

and |e−iz| ≥ e. Conversely, if Im(z) ≤ 1 then eiz ≥ e and e−iz ≤ e−1. In
either of these cases (i.e., if |Im(z)| ≥ 1) we have by the triangle inequality
| sin(z)| ≥ 1

2 (e − e−1). Squaring and taking reciprocals, 1
| sin(z)|2 ≤

4
(e−e−1)2 ,

giving the desired bound.
We are given that f(z) − 1

sin(z)2 is a holomorphic (therefore continuous)

function. By compactness, it is bounded on the rectangle {a+bi | |a| ≤ π/2, |b| ≤
1}. We have seen that both f(z) and 1

sin(z)2 is bounded on the strip {a+bi | |a| ≤
π/2, |b| ≥ 1}. Together, these bounds imply that f(z) − 1

sin(z)2 is bounded for

z = a+bi in the strip with |a| ≤ π/2. By periodicity, we deduce that f(z)− 1
sin(z)2

is a bounded, everywhere holomorphic function. Applying Liouville’s Theorem,
we see it is constant.

2. Do the following problem (a-g) from Gamelin.

Apply Cauchy! Answers: (a) 2πi, (b) 0, (c) 0, (e) For m ≥ 1, we have 2πi
(m−1)!

and for m ≤ 0 the integral is zero (the integrand is holomorphic in the interior).
(f) 2πi (the function log is defined on this contour, as it contains no real nubmers
≤ 0 and the contour contains z0 = 1 in its interior), so we get 2πi log′(1) = 2πi.
(g) This is the derivative at zero of the function f(z) = 1

(z2−4)ez , which is
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holomorphic in the unit disk. This is 1
42πi = πi

2 .

3. Stein-Shakarchi II.6.8 (the Cauchy Inequalities are Corollary 4.3
on page 48).

Since holomorphic functions have all continuous derivatives, f (n)(x) is bounded
on a bounded interval, and so we can make the inqeuality true for |x| ≤ 3/2.
It is therefore enough to find a constant An that holds for |x| ≥ 3/2. Let Ω be
the strip Im(z) < 1. Let x ∈ R. Let D1/2(x) be the disk around x of radius 1/2

and C1/2 the circle around x of radius 1/2. We have f (n)(x) = c
∫
C1/2(x)

f(z)dz,

where c = 1
n!·2πi is a constant. The Cauchy inequality1 tells us that |f (n)(x)| ≤

cn ·Maxz∈C1/2(x)|f(z)| (for cn = n! ·
(
1
2

)−n
). Since |x| ≥ 1/2, if z ∈ C1/2(x)

the triangle inequality gives |x| − 1/2 ≤ |z| ≤ |x| + 1/2. The condition on f
then implies that |f(x)| ≤ A(1 + |z|)η ≤ min(A · (1 + |x|± 1/2)η) (plus or minus
depending on whether η is positive or negative). Now 1+ |x|±1/2 ∈≤ 2(1+ |x|),
so f(z) is at most a factor of 2η more than A(1 + |x|)η.

We have∫
C1/2

f(z)

(z − x)n+1
dz =

∫ 2π

θ=0

f
(
x+ 1

2 exp(iθ)
)

·
i

2
exp(iθ),

using that d
dθ exp(iθ) = i exp(θ).Now 1

2 exp(θ), and therefore Maxz∈C1/2(x)|f(z)| ≤
2η(1 + |x|)η, and we are done by the Cauchy inequality.

4. Stein-Shakarchi II.6.9

Let φ0(z) = φ(z+z0)−z0. Let Ω0 = Ω−z0 (the shift of Ω that moves z0 to 0).
Then φ0 takes Ω0 to Ω0 and we have φ(0) = 0 and φ′0(0) = φ′(z0) = 1. Therefore
we may assume without loss of generality that φ = φ0 and z0 = 0. Write
φ(z) =

∑
ajz

j . Since We have a0 = φ(0) = 0, a1 = φ′(0) = 1. Assume φ(z) is
not linear. Then there is some minimal n ≥ 1 such that an 6= 0. Define Fk(z) :=
φ◦· · ·◦φ(z), the k-fold self-composition of φ. By induction on k, we can show that
Fk(z) = z+kanz

n+O(zn+1). Indeed: assume this is true about Fk. Then using
that F (z) = O(z), we have Fk+1 = Fk(φ(z)) = φ(z)+kanφ(z)n+O(φ(z)n+1) =
(z+anz

n+O(zn+1))+kan(z+anz
n)n+O(z)n+1 = z+(k+1)anz

n+O(zn+1). On
the other hand, φ(Ω) ⊂ Ω, so Fn(Ω) ⊂ Ω. Now choose a circle Cr around 0 such
that Cr and its interior is contained in Ω. Then, for some real constant A > 0

(depending on n, r), we must have kan
n! = F

(n)
k ≤ A ¨Maxz∈C(|Fk(z)|). Now

recall that Ω is bounded. Choose R such that z ∈ Ω implies |z| < R. Now since
φ(Ω) ⊂ Ω, we must have φ◦φ(Ω) ⊂ Ω, . . . , Fk(Ω) ⊂ Ω. Thus ¨Maxz∈Cr

Fn(z) ≤ R

1The Cauchy inequality generalizes the observation that | f(exp(t))
exp(it)n+1

˙exp(it)| = |f(exp(it))|,

so | 1
πn!

f (n)(0)| ≤
∫ 2π
0 |f(exp(it))|. If C is a more general circle with radius r, centered around

z0, then the bound on the right gets rescaled by a power of the radius, 1
πn!
|f (n)(z0)| ≤

1
rn

∫
z∈C |f(z)|dθ, where the integral is parametrize by angle. The integral can be further

bounded
∫
z∈C |f(z)|dθ ≤ 2π · ||fC || where f is the maximum of f on C.
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(regardless of what k is). So k|an|
n! ≤ AR, or in other words k ≤ n!AR

|an| (the right

hand side is defined since we assumed an 6= 0). Thus the finite constant n!AR
|an| is

greater than any positive integer, which is clearly absurd. This contradicts our
assumption that φ is not linear.

5. (Bonus) instead of one of the above exercises you can do problem
II.7.1. (a) Let z = exp

(
2πik
2N

)
. Notice that such points are dense in the unit

circle. z2
n

= 1 for n ≥ N. So for real 0 < r < 1, we have f(rz) =
∑
n<N (rz)2

n

+∑
n≥N (r)2

n

. The first sum is bounded by N (by the triangle inequality, as

|rz2n | ≤ 1). But as r → 1, the second sum approaches
∑
n≥N 1 =∞. Thus at a

dense set of points z of C1, the function f(z) is unbounded in a neighborhood of
z (in the open disk), and this implies that there is no point of C1 near which f(z)
is bounded, and f cannot be continued holomorphically (or even continuously)
to any point of the circle.

(b) By an absolute convergence argument, the function f is defined and
continuous on the closure of the unit disk. Define g(z) = f (a)(z), the ath
derivative of f , with a > α. Then asymptotically the kth coefficient of the
Taylor series of g(z) =

∑∞
k=0 bkz

k is bk = O(2na−nα) · z2n−a, with constant of
proportionality equal to 1. In particular, these coefficients are positive and go
to ∞. By a similar argument to the above, if z = exp

(
2πik
2N

)
and 0 < r < 1 is

real then
g(rz) =

∑
n≤N

bk(rz)k +
∑
n≥N

bk · rk · z−a

(since z2
N−a = z−a). The first sum is bounded independently of r and the

second sum goes to ∞· z−a for r → 1. Thus g(z) = f (a)(z) is nowhere bounded
on the circle C1, and cannot be extended continuously to any point of C1. But if
f(z) had an analytic continuation at some point of the circle, all its derivatives
would again be analytic, and in particular continuous. Contradiction.
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