Math 185 Homework 5 solutions and hints.

1. (a) Assume that $f(z)$ is an everywhere holomorphic function which is periodic with period π, so that $f(z+\pi)=f(z)$. Show that if f is bounded on the strip $\{a+b i \mid-\pi / 2 \leq a \leq \pi / 2\}$ then f is a constant.

The boundedness statement is equivalent to saying that there exists a real constant $c>0$ such that $|f(a+b i)| \leq c$ for $\pi / 2 \leq a \leq \pi / 2$. Now if $z=a+b i$ is arbitrary then by periodicity, $f(z)=f\left(z^{\prime}\right)$ for $z^{\prime}=a^{\prime}+b i$, with $a^{\prime}=(a+\pi / 2$ $\bmod \pi)-\pi / 2$. Since $0 \leq a \bmod \pi \leq \pi$, we see that $-\pi / 2 \leq a^{\prime} \leq \pi / 2$, so $|f(z)|=\left|f\left(z^{\prime}\right)\right| \leq c$.
(b) Show that the sum $f(z):=\sum_{n=-\infty}^{\infty} \frac{1}{(z+\pi \cdot n)^{2}}$ converges for all z other than integer multiples of π (for which one of the $\frac{1}{z+\pi \cdot n}$ will blow up), and show that it is periodic with period π.

First, assume $z=a+b i$ and $-\pi / 2 \leq a \leq \pi / 2$. Write $f(z)=1 /(z+0)^{2}+$ $\sum_{n \neq 0} \frac{1}{(z+n \pi)^{2}}$, or equivalently (separating positive and negative n), we write $f(z)=\sum_{n \geq 1} \frac{1}{(z+n \pi)^{2}}+\sum_{n \leq-1} \frac{1}{(z+n \pi)^{2}}$. Now since $|a| \leq \pi / 2$, the triangle inequality gives $|a+n \pi| \geq(|n|-1 / 2) \pi$, and so $|z| \geq|\operatorname{Re}(z)| \geq(|n|-1 / 2) \pi$. Flipping the inequality, we see that for a nonzero integer n, we have the inequality $\left|\frac{1}{z+n \pi}\right| \leq \frac{1}{((|n|-1 / 2) \pi)^{2}}=\frac{4}{(2 n-1)^{2} \pi^{2}}$. This converges (use the comparison test or the integral test), so so long as the remaining term $\frac{1}{z+0 \pi}$ is defined (i.e. $z \neq 0)$ we see that the sum defining $f(z)$ converges absolutely.

Now if $z=a+b i$ is any complex number which is not an integer multiple of π, let $z^{\prime}=(a+\pi / 2) \bmod \pi-\pi / 2$, so that $z^{\prime} \equiv z \bmod \pi$ and $\left|z^{\prime}\right| \leq \pi / 2$. Say that $z^{\prime}=z+k \pi$, for $k \in \mathbb{Z}$. Then each summand in the sum for $f(z)$ is $\frac{1}{(z+n \pi)^{2}}=\frac{1}{\left(z^{\prime}+(n-k) \pi\right)^{2}}$, and is also a summand in the sum for $f\left(z^{\prime}\right)$. And conversely, each summand $\frac{1}{\left(z^{\prime}+n \pi\right)}$ is equal to the summand $\frac{1}{(z+(n+k) \pi)}$ in the sum for $f(z)$ (note that this is not true if we do not allow n to be negative why?)

So we've seen that $f\left(z^{\prime}\right)$ is defined by an absolutely convergent sum for $z^{\prime} \neq 0$ and $f(z)$ is defined by a rearrangement of this sum (for $\left.z^{\prime} \neq 0 \bmod \pi\right)$. Therefore the sum defining $f\left(z^{\prime}\right)$ converges to the same value as $f(z)$. This gives periodicity and well-definedness.
(c) You may assume $f(z)$ defined above is holomorphic (on the domain $z \neq \pi n)$. Show that f is bounded for z satisfying $|\operatorname{Im}(z)| \geq 1$.

Say that $z=a+b i$. Then $f(z)=f\left(z^{\prime}\right)$ for $z^{\prime}=a^{\prime}+b$ with $\left|a^{\prime}\right| \leq \pi / 2$, as
before. We are now assuming that $|b| \geq 1$. Now from before, $\sum_{n \neq 0} \frac{1}{\left(z^{\prime}+n \pi\right)}$ is bounded by the constant $c=2 \cdot \sum_{n=0}^{\infty} \frac{4}{(2 n-1)^{2} \pi^{2}}$ (the 2 is here because each term $\frac{1}{\left(|n| \pi-\frac{1}{2} \pi\right)}$ appears twice: once for a negative and once for a positive index).
So it remains to bound $\frac{1}{z^{\prime}}$. But $\left|z^{\prime}\right| \geq \operatorname{Im}\left(z^{\prime}\right)=\operatorname{Im}(z) \geq 1$, so we get that $f(z)=f\left(z^{\prime}\right) \leq 1+c$ when $|\operatorname{Im}(z)| \geq 1$.
(d) We will see later (when we study Laurent series) that the poles of $f(z)$ exactly cancel the poles of $\frac{1}{\sin (z)^{2}}$, so that $f(z)-\frac{1}{\sin (z)^{2}}$ is everywhere holomorphic (or rather, can be extended to an everywhere holomorphic function). Taking this on faith, show that $f(z)=\frac{1}{\sin (z)^{2}}+c$ (for some constant c). (Hint: it will be helpful to see that $\frac{1}{\sin (z)^{2}}$ is also bounded for $|\operatorname{Im}(z)| \geq 1$.)

Suppose $|\operatorname{Im}(z)| \geq 1$. Then $|\sin (z)|=\left|\frac{e^{i z}+e^{-i z}}{2 i}\right| \geq \frac{1}{2}\left|\left(\left|e^{i z}\right|-\left|e^{-i z}\right|\right)\right|$, by the triangle inequality. But $\left|e^{z}\right|=e^{\operatorname{Re}(i z)}=e^{-\operatorname{Im}(z)}$. If $\operatorname{Im}(z) \geq 1$ then $\left|e^{i z}\right| \leq e^{-1}$ and $\left|e^{-i z}\right| \geq e$. Conversely, if $\operatorname{Im}(z) \leq 1$ then $e^{i z} \geq e$ and $e^{-i z} \leq e^{-1}$. In either of these cases (i.e., if $|\operatorname{Im}(z)| \geq 1$) we have by the triangle inequality $|\sin (z)| \geq \frac{1}{2}\left(e-e^{-1}\right)$. Squaring and taking reciprocals, $\frac{1}{|\sin (z)|^{2}} \leq \frac{4}{\left(e-e^{-1}\right)^{2}}$, giving the desired bound.

We are given that $f(z)-\frac{1}{\sin (z)^{2}}$ is a holomorphic (therefore continuous) function. By compactness, it is bounded on the rectangle $\{a+b i| | a|\leq \pi / 2,|b| \leq$ $1\}$. We have seen that both $f(z)$ and $\frac{1}{\sin (z)^{2}}$ is bounded on the strip $\{a+b i| | a \mid \leq$ $\pi / 2,|b| \geq 1\}$. Together, these bounds imply that $f(z)-\frac{1}{\sin (z)^{2}}$ is bounded for $z=a+b i$ in the strip with $|a| \leq \pi / 2$. By periodicity, we deduce that $f(z)-\frac{1}{\sin (z)^{2}}$ is a bounded, everywhere holomorphic function. Applying Liouville's Theorem, we see it is constant.

2. Do the following problem (a-g) from Gamelin.

Exercises for IV. 4

1. Evaluate the following integrals, using the Cauchy integral formula:
(a) $\oint_{|z|=2} \frac{z^{n}}{z-1} d z, \quad n \geq 0$
(e) $\oint_{|z|=1} \frac{e^{z}}{z^{m}} d z, \quad-\infty<m<\infty$
(b) $\oint_{|z|=1} \frac{z^{n}}{z-2} d z, \quad n \geq 0$
(f) $\int_{|z-1-i|=5 / 4}^{\mid z-1)^{2}} \frac{\log z}{(z-1} d z$
(c) $\oint_{|z|=1} \frac{\sin z}{z} d z$
(g) $\oint_{|z|=1} \frac{d z}{z^{2}\left(z^{2}-4\right) e^{z}}$

Apply Cauchy! Answers: (a) $2 \pi i$, (b) 0 , (c) 0 , (e) For $m \geq 1$, we have $\frac{2 \pi i}{(m-1)!}$ and for $m \leq 0$ the integral is zero (the integrand is holomorphic in the interior). (f) $2 \pi i$ (the function log is defined on this contour, as it contains no real nubmers ≤ 0 and the contour contains $z_{0}=1$ in its interior), so we get $2 \pi i \log ^{\prime}(1)=2 \pi i$. (g) This is the derivative at zero of the function $f(z)=\frac{1}{\left(z^{2}-4\right) e^{z}}$, which is
holomorphic in the unit disk. This is $\frac{1}{4} 2 \pi i=\frac{\pi i}{2}$.

3. Stein-Shakarchi II.6.8 (the Cauchy Inequalities are Corollary 4.3 on page 48).

Since holomorphic functions have all continuous derivatives, $f^{(n)}(x)$ is bounded on a bounded interval, and so we can make the inqeuality true for $|x| \leq 3 / 2$. It is therefore enough to find a constant A_{n} that holds for $|x| \geq 3 / 2$. Let Ω be the strip $\operatorname{Im}(z)<1$. Let $x \in \mathbb{R}$. Let $D_{1 / 2}(x)$ be the disk around x of radius $1 / 2$ and $C_{1 / 2}$ the circle around x of radius $1 / 2$. We have $f^{(n)}(x)=c \int_{C_{1 / 2}(x)} f(z) d z$, where $c=\frac{1}{n!\cdot 2 \pi i}$ is a constant. The Cauchy inequality ${ }^{1}$ tells us that $\left|f^{(n)}(x)\right| \leq$ $c_{n} \cdot \operatorname{Max}_{z \in C_{1 / 2}(x)}|f(z)|$ (for $c_{n}=n!\cdot\left(\frac{1}{2}\right)^{-n}$). Since $|x| \geq 1 / 2$, if $z \in C_{1 / 2}(x)$ the triangle inequality gives $|x|-1 / 2 \leq|z| \leq|x|+1 / 2$. The condition on f then implies that $|f(x)| \leq A(1+|z|)^{\eta} \leq \min \left(A \cdot(1+|x| \pm 1 / 2)^{\eta}\right)$ (plus or minus depending on whether η is positive or negative). Now $1+|x| \pm 1 / 2 \in \leq 2(1+|x|)$, so $f(z)$ is at most a factor of 2^{η} more than $A(1+|x|)^{\eta}$.

We have

$$
\int_{C_{1 / 2}} \frac{f(z)}{(z-x)^{n+1}} d z=\int_{\theta=0}^{2 \pi} \frac{f\left(x+\frac{1}{2} \exp (i \theta)\right)}{2} \frac{i}{2} \exp (i \theta)
$$

using that $\frac{d}{d \theta} \exp (i \theta)=i \exp (\theta)$. Now $\frac{1}{2} \exp (\theta)$, and therefore $\operatorname{Max}_{z \in C_{1 / 2}(x)}|f(z)| \leq$ $2^{\eta}(1+|x|)^{\eta}$, and we are done by the Cauchy inequality.

4. Stein-Shakarchi II.6.9

Let $\phi_{0}(z)=\phi\left(z+z_{0}\right)-z_{0}$. Let $\Omega_{0}=\Omega-z_{0}$ (the shift of Ω that moves z_{0} to 0$)$. Then ϕ_{0} takes Ω_{0} to Ω_{0} and we have $\phi(0)=0$ and $\phi_{0}^{\prime}(0)=\phi^{\prime}\left(z_{0}\right)=1$. Therefore we may assume without loss of generality that $\phi=\phi_{0}$ and $z_{0}=0$. Write $\phi(z)=\sum a_{j} z^{j}$. Since We have $a_{0}=\phi(0)=0, a_{1}=\phi^{\prime}(0)=1$. Assume $\phi(z)$ is not linear. Then there is some minimal $n \geq 1$ such that $a_{n} \neq 0$. Define $F_{k}(z):=$ $\phi \circ \cdots \circ \phi(z)$, the k-fold self-composition of ϕ. By induction on k, we can show that $F_{k}(z)=z+k a_{n} z^{n}+O\left(z^{n+1}\right)$. Indeed: assume this is true about F_{k}. Then using that $F(z)=O(z)$, we have $F_{k+1}=F_{k}(\phi(z))=\phi(z)+k a_{n} \phi(z)^{n}+O\left(\phi(z)^{n+1}\right)=$ $\left(z+a_{n} z^{n}+O\left(z^{n+1}\right)\right)+k a_{n}\left(z+a_{n} z^{n}\right)^{n}+O(z)^{n+1}=z+(k+1) a_{n} z^{n}+O\left(z^{n+1}\right)$. On the other hand, $\phi(\Omega) \subset \Omega$, so $F_{n}(\Omega) \subset \Omega$. Now choose a circle C_{r} around 0 such that C_{r} and its interior is contained in Ω. Then, for some real constant $A>0$ (depending on n, r, we must have $\frac{k a_{n}}{n!}=F_{k}^{(n)} \leq A \ddot{M a x} x_{z \in C}\left(\left|F_{k}(z)\right|\right)$. Now recall that Ω is bounded. Choose R such that $z \in \Omega$ implies $|z|<R$. Now since $\phi(\Omega) \subset \Omega$, we must have $\phi \circ \phi(\Omega) \subset \Omega, \ldots, F_{k}(\Omega) \subset \Omega$. Thus $\operatorname{Max}_{z \in C_{r}} F_{n}(z) \leq R$

[^0](regardless of what k is). So $\frac{k\left|a_{n}\right|}{n!} \leq A R$, or in other words $k \leq \frac{n!A R}{\left|a_{n}\right|}$ (the right hand side is defined since we assumed $a_{n} \neq 0$). Thus the finite constant $\frac{n!A R}{\left|a_{n}\right|}$ is greater than any positive integer, which is clearly absurd. This contradicts our assumption that ϕ is not linear.
5. (Bonus) instead of one of the above exercises you can do problem II.7.1. (a) Let $z=\exp \left(\frac{2 \pi i k}{2^{N}}\right)$. Notice that such points are dense in the unit circle. $z^{2^{n}}=1$ for $n \geq N$. So for real $0<r<1$, we have $f(r z)=\sum_{n<N}(r z)^{2^{n}}+$ $\sum_{n \geq N}(r)^{2^{n}}$. The first sum is bounded by N (by the triangle inequality, as $\left|r z^{2^{n}}\right| \leq 1$). But as $r \rightarrow 1$, the second sum approaches $\sum_{n \geq N} 1=\infty$. Thus at a dense set of points z of C_{1}, the function $f(z)$ is unbounded in a neighborhood of z (in the open disk), and this implies that there is no point of C_{1} near which $f(z)$ is bounded, and f cannot be continued holomorphically (or even continuously) to any point of the circle.
(b) By an absolute convergence argument, the function f is defined and continuous on the closure of the unit disk. Define $g(z)=f^{(a)}(z)$, the a th derivative of f, with $a>\alpha$. Then asymptotically the k th coefficient of the Taylor series of $g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ is $b_{k}=O\left(2^{n a-n \alpha}\right) \cdot z^{2^{n}-a}$, with constant of proportionality equal to 1 . In particular, these coefficients are positive and go to ∞. By a similar argument to the above, if $z=\exp \left(\frac{2 \pi i k}{2^{N}}\right)$ and $0<r<1$ is real then
$$
g(r z)=\sum_{n \leq N} b_{k}(r z)^{k}+\sum_{n \geq N} b_{k} \cdot r^{k} \cdot z^{-a}
$$
(since $z^{2^{N}-a}=z^{-a}$). The first sum is bounded independently of r and the second sum goes to $\infty \cdot z^{-a}$ for $r \rightarrow 1$. Thus $g(z)=f^{(a)}(z)$ is nowhere bounded on the circle C_{1}, and cannot be extended continuously to any point of C_{1}. But if $f(z)$ had an analytic continuation at some point of the circle, all its derivatives would again be analytic, and in particular continuous. Contradiction.

[^0]: ${ }^{1}$ The Cauchy inequality generalizes the observation that $\left|\frac{f(\exp (t))}{\exp (i t)^{n+1}} \exp (i t)\right|=|f(\exp (i t))|$, so $\left|\frac{1}{\pi n!} f^{(n)}(0)\right| \leq \int_{0}^{2 \pi}|f(\exp (i t))|$. If C is a more general circle with radius r, centered around z_{0}, then the bound on the right gets rescaled by a power of the radius, $\frac{1}{\pi n!}\left|f^{(n)}\left(z_{0}\right)\right| \leq$ $\frac{1}{r^{n}} \int_{z \in C}|f(z)| d \theta$, where the integral is parametrize by angle. The integral can be further bounded $\int_{z \in C}|f(z)| d \theta \leq 2 \pi \cdot\left\|f_{C}\right\|$ where f is the maximum of f on C.

