Math 185 Homework 5.Due Wednesday 2/25

Exercise II.6.n denotes exercises Stein and Shakarchi, Chapter 2, section 6. II.7.n is similar for "problem n".

1. (a) Assume that $f(z)$ is an everywhere holomorphic function which is periodic with period π, so that $f(z+\pi)=f(z)$. Show that if f is bounded on the strip $\{a+b i \mid-\pi / 2 \leq a \leq \pi / 2\}$ then f is a constant.
(b) Show that the sum $f(z):=\sum_{n=-\infty}^{\infty} \frac{1}{(z+\pi \cdot n)^{2}}$ converges for all z other than integer multiples of π (for which one of the $\frac{1}{z+\pi \cdot n}$ will blow up), and show that it is periodic with period π.
(c) You may assume $f(z)$ defined above is holomorphic (on the domain $z \neq \pi n)$. Show that f is bounded for z satisfying $|\operatorname{Im}(z)| \geq 1$.
(d) We will see later (when we study Laurent series) that the poles of $f(z)$ exactly cancel the poles of $\frac{1}{\sin (z)^{2}}$, so that $f(z)-\frac{1}{\sin (z)^{2}}$ is everywhere holomorphic (or rather, can be extended to an everywhere holomorphic function). Taking this on faith, show that $f(z)=\frac{1}{\sin (z)^{2}}+c$ (for some constant c). (Hint: it will be helpful to see that $\frac{1}{\sin (z)^{2}}$ is also bounded for $|\operatorname{Im}(z)| \geq 1$.)
2. Do the following problem (a-g) from Gamelin.

Exercises for IV. 4

1. Evaluate the following integrals, using the Cauchy integral formula:
(a) $\oint_{|z|=2} \frac{z^{n}}{z-1} d z, \quad n \geq 0$
(e) $\oint_{|z|=1} \frac{e^{z}}{z^{m}} d z, \quad-\infty<m<\infty$
(b) $\oint_{|z|=1} \frac{z^{n}}{z-2} d z, \quad n \geq 0$
(f) $\int_{|z-1-i|=5 / 4}^{|z|=1)^{2}} \frac{\log z}{(z-1} d z$
(c) $\oint_{|z|=1} \frac{\sin z}{z} d z$
(g) $\oint_{|z|=1} \frac{d z}{z^{2}\left(z^{2}-4\right) e^{z}}$
2. Stein-Shakarchi II.6.8 (the Cauchy Inequalities are Corollary 4.3 on page 48).
3. Stein-Shakarchi II.6.9
4. (Bonus) instead of one of the above exercises you can do problem II.7.1.
