Math 185 Homework 5.Due Wednesday 2/25

Exercise II.6.n denotes exercises Stein and Shakarchi, Chapter 2, section 6. II.7.n is similar for "problem n".

1. (a) Assume that f(z) is an everywhere holomorphic function which is *periodic* with period π , so that $f(z + \pi) = f(z)$. Show that if f is bounded on the strip

{ $a + bi \mid -\pi/2 \le a \le \pi/2$ } then f is a constant. (b) Show that the sum $f(z) := \sum_{n=-\infty}^{\infty} \frac{1}{(z+\pi \cdot n)^2}$ converges for all z other than integer multiples of π (for which one of the $\frac{1}{z+\pi \cdot n}$ will blow up), and show that it is periodic with period π .

(c) You may assume f(z) defined above is holomorphic (on the domain $z \neq \pi n$). Show that f is bounded for z satisfying $|\text{Im}(z)| \ge 1$.

(d) We will see later (when we study Laurent series) that the poles of f(z) exactly cancel the poles of $\frac{1}{\sin(z)^2}$, so that $f(z) - \frac{1}{\sin(z)^2}$ is everywhere holomorphic (or rather, can be extended to an everywhere holomorphic function). Taking this on faith, show that $f(z) = \frac{1}{\sin(z)^2} + c$ (for some constant c). (Hint: it will be helpful to see that $\frac{1}{\sin(z)^2}$ is also bounded for $|\text{Im}(z)| \ge 1$.)

2. Do the following problem (a-g) from Gamelin.

Exercises for IV.4

1. Evaluate the following integrals, using the Cauchy integral formula:

(a)
$$\oint_{|z|=2} \frac{z^{n}}{z-1} dz$$
, $n \ge 0$
(b) $\oint_{|z|=1} \frac{z^{n}}{z-2} dz$, $n \ge 0$
(c) $\oint_{|z|=1} \frac{\sin z}{z} dz$
(c) $\oint_{|z|=1} \frac{\sin z}{z} dz$
(c) $\int_{|z|=1} \frac{\sin z}{z} dz$

- 3. Stein-Shakarchi II.6.8 (the Cauchy Inequalities are Corollary 4.3 on page 48).
- 4. Stein-Shakarchi II.6.9

5. (Bonus) instead of one of the above exercises you can do problem II.7.1.